Effects of Different Doping Strategies on Cubic Li7La3Zr2O12 Solid-State Li-Ion Battery Electrolytes

兴奋剂 离子 材料科学 固态 电解质 快离子导体 电池(电) 分析化学(期刊) 物理化学 化学 热力学 电极 物理 光电子学 功率(物理) 有机化学 色谱法
作者
Nikolai Helth Gaukås,Tor Olav Sunde,Bjørnar Arstad,Anita Hamar Reksten,Elena Stefan,Annett Thøgersen,M. Pedersen,Truls Norby,Yngve Larring
出处
期刊:ACS applied energy materials [American Chemical Society]
标识
DOI:10.1021/acsaem.4c02708
摘要

Solid-state Li-ion conductors based on cubic Li7La3Zr2O12 (LLZO) garnets have received much attention in recent years as potential next-generation battery electrolytes, enabling safer and more energy-dense Li-ion batteries. Aliovalent doping of the LLZO structure is usually necessary to stabilize the cubic garnet phase and increase the ionic conductivity by increasing the concentration of Li vacancies. Here, we report on the synthesis, characterization, and testing of Li7–3xAlxLa3Zr2O12 ceramics with different amounts of Al doping (x = 0.20–0.40). Phase-pure LLZO with a cubic crystal structure was prepared by an aqueous synthesis route, and dense (>93%) ceramic samples were fabricated by conventional sintering at 1200 °C. By analyzing the composition, microstructure, and electrochemical performance, we found that the optimal Al content in LLZO is x = 0.2, the lowest content needed to stabilize the cubic structure in our series. For the composition with x = 0.2, we found a Li-ion conductivity at room temperature of 3.7 × 10–4 S cm–1 and an activation energy of Ea = 0.3 eV. At a higher doping concentration, the conductivity decreases, and the activation energy increases; for x ≥ 0.35, secondary Al-rich phases appear. These results indicate an inverse relationship between Li-ion conductivity and Al doping, where the optimal amount of doping is the minimum amount necessary to stabilize the cubic LLZO phase. Additionally, we present an analysis of the available literature on chemical modification of LLZO to compare how different doping strategies affect Li conductivity. Based on our literature review, Ga and Ta doping gives the highest conductivities (≤2 × 10–3 S cm–1). The literature analysis also supports our findings that the primary objective of the dopant is to stabilize the cubic structure rather than create Li vacancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动凤凰发布了新的文献求助10
刚刚
黑溜溜完成签到,获得积分10
1秒前
大白不白完成签到,获得积分10
1秒前
桃园完成签到,获得积分10
1秒前
12332145678发布了新的文献求助10
1秒前
1秒前
2秒前
叶液完成签到,获得积分10
2秒前
2秒前
Shilly完成签到,获得积分10
2秒前
3秒前
3秒前
vioz完成签到,获得积分10
3秒前
还单身的尔琴完成签到,获得积分20
3秒前
竹筏过海应助斯文跳跳糖采纳,获得30
3秒前
wanci应助舒心平文采纳,获得10
4秒前
zzzf发布了新的文献求助10
4秒前
包容的狗完成签到 ,获得积分10
5秒前
5秒前
5秒前
kekeji发布了新的文献求助10
5秒前
子俞发布了新的文献求助10
6秒前
Crazy_Runner完成签到,获得积分10
6秒前
@你。完成签到,获得积分10
6秒前
7秒前
王唯任完成签到,获得积分10
7秒前
maox1aoxin应助小王采纳,获得20
8秒前
8秒前
9秒前
拉长的绮梅完成签到,获得积分20
9秒前
叶液发布了新的文献求助10
9秒前
自由从筠发布了新的文献求助10
9秒前
hhh完成签到 ,获得积分10
9秒前
holly发布了新的文献求助10
10秒前
Alex完成签到 ,获得积分10
10秒前
10秒前
科研通AI2S应助李喜喜采纳,获得10
10秒前
顾化蛹发布了新的文献求助10
11秒前
隐形曼青应助xiaojingyang0802采纳,获得10
11秒前
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231987
求助须知:如何正确求助?哪些是违规求助? 2878991
关于积分的说明 8208546
捐赠科研通 2546450
什么是DOI,文献DOI怎么找? 1375985
科研通“疑难数据库(出版商)”最低求助积分说明 647507
邀请新用户注册赠送积分活动 622675