Artificial Intelligence in Predicting Postpartum Hemorrhage in Twin Pregnancies Undergoing Cesarean Section

产科 章节(排版) 医学 双胎妊娠 怀孕 妊娠期 计算机科学 生物 遗传学 操作系统
作者
Şükran Doğru,Huriye Ezveci,Fatih Akkuş,Pelin Bahçeci,Fikriye Karanfil Yaman,Ali Acar
出处
期刊:Twin Research and Human Genetics [Cambridge University Press]
卷期号:: 1-7 被引量:1
标识
DOI:10.1017/thg.2024.48
摘要

Abstract This study aimed to create a risk prediction model with artificial intelligence (AI) to identify patients at higher risk of postpartum hemorrhage using perinatal characteristics that may be associated with later postpartum hemorrhage (PPH) in twin pregnancies that underwent cesarean section. The study was planned as a retrospective cohort study at University Hospital. All twin cesarean deliveries were categorized into two groups: those with and without PPH. Using the perinatal characteristics of the cases, four different machine learning classifiers were created: Logistic regression (LR), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP). LR, RF, and SVM models were created a second time by including class weights to manage the underlying imbalances in the data. A total of 615 twin pregnancies were included in the study. There were 150 twin pregnancies with PPH and 465 without PPH. Dichorionity, PAS, and placenta previa were significantly higher in the PPH-positive group ( p = .045, p = .004, p = .001 respectively). In our model, LR with class weight was the best model with the highest negative predictive value. The AUC in our LR with class weight model was %75.12 with an accuracy of 70.73%, a PPV of 47.92%, and an NPV of 85.33% in our data. Although the application of machine learning to create predictive models using clinical risk factors and our model’s 70% accuracy rate are encouraging, it is not sufficient. Machine learning modeling needs further study and validation before being incorporated into clinical use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成绩提高发布了新的文献求助10
刚刚
科研通AI5应助marg采纳,获得10
刚刚
魏冰完成签到,获得积分20
1秒前
牛牛在搬砖完成签到,获得积分10
1秒前
一亩蔬菜发布了新的文献求助10
1秒前
Rsoup发布了新的文献求助10
1秒前
活力听兰完成签到,获得积分10
1秒前
敏感忆曼完成签到,获得积分10
2秒前
2秒前
书双完成签到,获得积分10
2秒前
wk完成签到,获得积分10
2秒前
3秒前
3秒前
任性的蝴蝶完成签到,获得积分10
3秒前
贤yu完成签到,获得积分10
4秒前
所所应助NINI采纳,获得10
4秒前
Jasper应助木子采纳,获得10
4秒前
11发布了新的文献求助30
4秒前
NtoLse完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
lalala发布了新的文献求助10
7秒前
鱼维尼完成签到,获得积分10
7秒前
绿兔子完成签到,获得积分10
7秒前
7秒前
小龙完成签到 ,获得积分10
8秒前
早爹发布了新的文献求助30
8秒前
lbma完成签到,获得积分10
8秒前
苗条的寒珊完成签到,获得积分20
9秒前
科目三应助清秀的煜城采纳,获得10
9秒前
10秒前
华hua完成签到,获得积分10
10秒前
10秒前
给我好好读书完成签到,获得积分10
10秒前
bbll完成签到,获得积分10
10秒前
0h完成签到,获得积分10
10秒前
xfy完成签到 ,获得积分10
11秒前
en发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666988
求助须知:如何正确求助?哪些是违规求助? 3225771
关于积分的说明 9765484
捐赠科研通 2935617
什么是DOI,文献DOI怎么找? 1607829
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735302