Exploring augmentation strategies in mixed reality for autonomous driving with depth cameras

计算机科学 虚拟现实 过程(计算) 集合(抽象数据类型) 增强现实 混合现实 人工智能 代表(政治) 质量(理念) 噪音(视频) 对象(语法) 传感器融合 人机交互 计算机视觉 图像(数学) 哲学 认识论 政治 政治学 法学 程序设计语言 操作系统
作者
Imane Argui,Maxime Guériau,Samia Aïnouz
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241296919
摘要

One significant challenge in improving autonomous driving algorithms is the lack of diverse real-world data. Moreover, transferring models from simulation to reality faces the reality gap problem. This study addresses this issue by developing an augmentation technique for mixed-reality environments, aimed at improving the testing and training of autonomous vehicles. Tested offline, it lays the groundwork for future online applications. The methodology focuses on creating virtual depth images using a virtual camera and applying an augmentation strategy to the KITTI data set. This creates a mixed-reality representation by combining virtual and real depth maps, leveraging depth information in the fusion process. The outcomes of this process are notably effective, achieving a balance between virtual and real-world aspects. This fusion method adeptly combines elements from both environments, maintaining the quality of the images. The novel contributions of this work include a detailed augmentation strategy that seamlessly integrates virtual objects into real depth maps, accounting for occlusions and ensuring realistic depth representations. In addition, this work demonstrates the feasibility of generating a large data set using the proposed method, significantly expanding the available data for training autonomous driving models. The use of metrics such as SSIM, peak signal-to-noise ratio (PSNR), and MAE, alongside object detection models such as Faster RCNN, provides a complete evaluation of both quantitative and qualitative aspects. The results demonstrate the quality of the augmented images, setting a foundation for potential online applications. The proposed strategy enables the generation of larger data set and facilitates safe, effective training in scenarios considered too risky or challenging to simulate accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小白完成签到,获得积分10
1秒前
归尘发布了新的文献求助10
2秒前
知来者发布了新的文献求助10
2秒前
如意翡翠发布了新的文献求助10
3秒前
3秒前
结实涑发布了新的文献求助10
4秒前
4秒前
5秒前
无花果应助Eve采纳,获得10
5秒前
5秒前
叶长亭完成签到,获得积分10
6秒前
7秒前
体面人完成签到,获得积分10
8秒前
空谷新苗完成签到,获得积分10
8秒前
光亮的擎完成签到,获得积分20
8秒前
9秒前
顺利八宝粥完成签到,获得积分10
9秒前
小四喜发布了新的文献求助10
9秒前
10秒前
sxwang发布了新的文献求助10
11秒前
左友铭发布了新的文献求助10
11秒前
11秒前
皮老师发布了新的文献求助20
11秒前
结实涑完成签到,获得积分10
13秒前
Akim应助豆子采纳,获得10
14秒前
14秒前
端庄的萝完成签到,获得积分10
16秒前
驰驰发布了新的文献求助10
16秒前
Qianbaor应助61489486采纳,获得10
17秒前
李爱国应助杪123采纳,获得10
18秒前
小奶瓶_完成签到 ,获得积分10
18秒前
大模型应助左友铭采纳,获得10
22秒前
Hommand_藏山完成签到,获得积分10
23秒前
强小强努力努力完成签到 ,获得积分10
23秒前
强小强努力努力完成签到 ,获得积分10
23秒前
科研通AI5应助Tia采纳,获得10
24秒前
烟花应助明理的化蛹采纳,获得10
24秒前
搜集达人应助九月采纳,获得10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978