Lightweight neural inverse rendering framework for uncalibrated photometric stereo

渲染(计算机图形) 人工智能 计算机科学 计算机视觉 光度立体 计算机图形学(图像) 人工神经网络 图像(数学)
作者
Zhi Xu,Xianghua Xie,Junjie Lai,Hao Wu,Jiajia Liu
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:34 (01)
标识
DOI:10.1117/1.jei.34.1.013001
摘要

Uncalibrated photometric stereo is a formidable challenge task in the field of 3D vision, aiming to reconstruct the surface normal of an object when its shape, material reflectance, and light conditions are all unknown. At present, it remains difficult to address when dealing with more general materials (e.g., anisotropy) with complex reflectance and objects with significant shadows. In addition, the presence of generalized bas-relief ambiguity, which refers to the inherent ambiguity between shape and light, further compounds the challenges of uncalibrated photometric stereo. To overcome these limitations, we propose a lightweight unsupervised neural inverse rendering architecture, called General Material Shadow-Neural Inverse Rendering (GMS-NIR), which can effectively solve the uncalibrated photometric stereo problem by combining a learnable general material reflectance model and a shadow rendering model. We design an optimization strategy that allows GMS-NIR to jointly optimize the surface normal, light direction, and light intensity in an unsupervised manner by utilizing backpropagation to minimize rendering errors. Thorough experiments with diverse real-world datasets affirm the superior performance of our approach compared with alternative uncalibrated photometric stereo methods. GMS-NIR's ability to handle a variety of materials and complex object shapes while accurately reconstructing surface normal makes it a promising advancement in the fields of computer vision and 3D surface reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助zhenjl采纳,获得30
刚刚
1秒前
顾矜应助叫我魔王大人采纳,获得10
1秒前
2秒前
意忆完成签到 ,获得积分10
3秒前
HHHhhhh完成签到,获得积分10
4秒前
5秒前
冰水发布了新的文献求助10
5秒前
6秒前
科研汪完成签到,获得积分10
7秒前
7秒前
8秒前
隐形曼青应助VVhahaha采纳,获得10
8秒前
8秒前
Ge完成签到 ,获得积分10
8秒前
LLL完成签到,获得积分10
9秒前
CodeCraft应助Jameson采纳,获得10
9秒前
9秒前
9秒前
9秒前
齐多达完成签到 ,获得积分10
9秒前
qzzj完成签到,获得积分10
10秒前
030219发布了新的文献求助10
10秒前
FashionBoy应助刘天虎研通采纳,获得50
10秒前
悦耳的芙发布了新的文献求助10
10秒前
慕青应助Alay采纳,获得10
10秒前
HAHA完成签到,获得积分10
11秒前
酷波er应助tassssadar采纳,获得10
12秒前
无心的可仁完成签到,获得积分10
13秒前
鑫搭发布了新的文献求助10
14秒前
huangyao完成签到 ,获得积分10
14秒前
exy发布了新的文献求助10
14秒前
冷艳莛发布了新的文献求助10
14秒前
yelis完成签到,获得积分10
14秒前
14秒前
mengyuhuan发布了新的文献求助10
14秒前
15秒前
15秒前
Poyd发布了新的文献求助10
15秒前
小章鱼完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552796
求助须知:如何正确求助?哪些是违规求助? 3128883
关于积分的说明 9379843
捐赠科研通 2828004
什么是DOI,文献DOI怎么找? 1554841
邀请新用户注册赠送积分活动 725605
科研通“疑难数据库(出版商)”最低求助积分说明 715056