An Improved Combinatorial Benders Decomposition Algorithm for the Human-Robot Collaborative Assembly Line Balancing Problem

装配线 本德分解 组合优化 计算机科学 数学优化 分解 算法 直线(几何图形) 数学 工程类 机械工程 生态学 几何学 生物
作者
Dian Huang,Zhaofang Mao,Kan Fang,Enyuan Fu,Michael Pinedo
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0279
摘要

As an emerging technology, human-robot collaboration (HRC) has been implemented to enhance the performance of assembly lines and improve the safety of human workers. By integrating the advantages of human workers and collaborative robots (cobots), HRC enables production systems to process tasks consecutively, concurrently, or collaboratively. However, the introduction of cobots also makes the corresponding human-robot collaborative assembly line balancing problem more complex and difficult to solve. To solve this problem, we first propose an enhanced mixed integer program (EMIP) with various enhancement techniques and tighter bounds, and then, we develop an improved combinatorial Benders decomposition algorithm (Algorithm ICBD) with new local search strategies, Benders cuts, and acceleration procedures. To verify the effectiveness of our proposed model and algorithms, we conduct extensive computational experiments, and the results show that our proposed EMIP model is significantly better than the existing mixed integer program model; the percentages of instances that can obtain feasible and optimal solutions are increased from 82.42% to 100% and from 29.17% to 43.5%, respectively, whereas the average gap is decreased from 19.81% to 5.64%. In addition, our proposed Algorithm ICBD can get 100% of feasible solutions and 65.92% of optimal solutions for all of the test instances, and the average gap is only 1.49%. Moreover, compared with existing Benders decomposition methods for this problem, our approach yields comparatively better solutions in notably shorter average computational time when run in the same computational environment. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research was supported by the National Natural Science Foundation Council of China [Grants 72401214, 92167206, 7221101377, 72471169, and 72231005], the Ministry of Education of China [Grant 24YJC630078], and Computation and Analytics of Complex Management Systems (Tianjin University). This research was also supported by the Tianjin Natural Science Foundation Project [Grant 23JCQNJC01900] and the Tianjin Philosophy and Social Science Planning Project [Grant TJGL21-016]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0279 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0279 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hihi采纳,获得10
刚刚
刚刚
2秒前
GT完成签到,获得积分10
3秒前
3秒前
Joel发布了新的文献求助10
4秒前
研友_VZG7GZ应助soong0330采纳,获得10
4秒前
6秒前
斯文败类应助Jane采纳,获得30
6秒前
缓慢珠发布了新的文献求助10
6秒前
nininini发布了新的文献求助10
7秒前
JZ发布了新的文献求助10
8秒前
吃手手完成签到,获得积分20
10秒前
蔡蔡蔡完成签到,获得积分20
10秒前
零九三发布了新的文献求助10
11秒前
充电宝应助DW采纳,获得10
11秒前
13秒前
13秒前
ling2001完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
18秒前
krkr发布了新的文献求助10
18秒前
18秒前
ghostR发布了新的文献求助10
19秒前
20秒前
望昔发布了新的文献求助30
20秒前
HY发布了新的文献求助10
21秒前
我是老大应助零九三采纳,获得10
22秒前
piooo完成签到,获得积分10
22秒前
Ava应助ZHOU采纳,获得10
22秒前
傻傻的孤云完成签到,获得积分10
24秒前
25秒前
张宝发布了新的文献求助10
26秒前
聪明的凝丹完成签到,获得积分10
26秒前
何必不曾完成签到,获得积分10
26秒前
李爱国应助DW采纳,获得10
27秒前
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161454
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897283
捐赠科研通 2471758
什么是DOI,文献DOI怎么找? 1316122
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112