An Improved Combinatorial Benders Decomposition Algorithm for the Human-Robot Collaborative Assembly Line Balancing Problem

装配线 本德分解 组合优化 计算机科学 数学优化 分解 算法 直线(几何图形) 数学 工程类 几何学 生态学 机械工程 生物
作者
Dian Huang,Zhaofang Mao,Kan Fang,Enyuan Fu,Michael Pinedo
出处
期刊:Informs Journal on Computing 被引量:3
标识
DOI:10.1287/ijoc.2023.0279
摘要

As an emerging technology, human-robot collaboration (HRC) has been implemented to enhance the performance of assembly lines and improve the safety of human workers. By integrating the advantages of human workers and collaborative robots (cobots), HRC enables production systems to process tasks consecutively, concurrently, or collaboratively. However, the introduction of cobots also makes the corresponding human-robot collaborative assembly line balancing problem more complex and difficult to solve. To solve this problem, we first propose an enhanced mixed integer program (EMIP) with various enhancement techniques and tighter bounds, and then, we develop an improved combinatorial Benders decomposition algorithm (Algorithm ICBD) with new local search strategies, Benders cuts, and acceleration procedures. To verify the effectiveness of our proposed model and algorithms, we conduct extensive computational experiments, and the results show that our proposed EMIP model is significantly better than the existing mixed integer program model; the percentages of instances that can obtain feasible and optimal solutions are increased from 82.42% to 100% and from 29.17% to 43.5%, respectively, whereas the average gap is decreased from 19.81% to 5.64%. In addition, our proposed Algorithm ICBD can get 100% of feasible solutions and 65.92% of optimal solutions for all of the test instances, and the average gap is only 1.49%. Moreover, compared with existing Benders decomposition methods for this problem, our approach yields comparatively better solutions in notably shorter average computational time when run in the same computational environment. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research was supported by the National Natural Science Foundation Council of China [Grants 72401214, 92167206, 7221101377, 72471169, and 72231005], the Ministry of Education of China [Grant 24YJC630078], and Computation and Analytics of Complex Management Systems (Tianjin University). This research was also supported by the Tianjin Natural Science Foundation Project [Grant 23JCQNJC01900] and the Tianjin Philosophy and Social Science Planning Project [Grant TJGL21-016]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0279 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0279 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阔达凝天发布了新的文献求助10
1秒前
斯文败类应助万青云采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
壮观艳完成签到,获得积分10
4秒前
4秒前
4秒前
JZ完成签到,获得积分10
5秒前
Shoshana完成签到,获得积分10
6秒前
6秒前
甜北枳完成签到,获得积分10
7秒前
承乐发布了新的文献求助10
7秒前
珊珊发布了新的文献求助10
7秒前
简单幸福完成签到 ,获得积分0
7秒前
9秒前
无花果应助adamwang采纳,获得10
9秒前
9秒前
HCT发布了新的文献求助10
9秒前
11秒前
Kondo发布了新的文献求助10
12秒前
小鱼完成签到 ,获得积分10
13秒前
一一应助有意义采纳,获得10
13秒前
13秒前
橘猫完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
求求你帮帮我完成签到,获得积分10
14秒前
共享精神应助珊珊采纳,获得10
14秒前
共享精神应助禹宛白采纳,获得10
14秒前
14秒前
15秒前
长情的小鸽子完成签到,获得积分10
15秒前
157295108发布了新的文献求助10
16秒前
烟花应助zxcvvbnm采纳,获得10
16秒前
16秒前
阔达如松发布了新的文献求助10
16秒前
WNL发布了新的文献求助10
16秒前
坚强水杯发布了新的文献求助60
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802