An Improved Combinatorial Benders Decomposition Algorithm for the Human-Robot Collaborative Assembly Line Balancing Problem

装配线 本德分解 组合优化 计算机科学 数学优化 分解 算法 直线(几何图形) 数学 工程类 几何学 生态学 机械工程 生物
作者
Dian Huang,Zhaofang Mao,Kan Fang,Enyuan Fu,Michael Pinedo
出处
期刊:Informs Journal on Computing 被引量:3
标识
DOI:10.1287/ijoc.2023.0279
摘要

As an emerging technology, human-robot collaboration (HRC) has been implemented to enhance the performance of assembly lines and improve the safety of human workers. By integrating the advantages of human workers and collaborative robots (cobots), HRC enables production systems to process tasks consecutively, concurrently, or collaboratively. However, the introduction of cobots also makes the corresponding human-robot collaborative assembly line balancing problem more complex and difficult to solve. To solve this problem, we first propose an enhanced mixed integer program (EMIP) with various enhancement techniques and tighter bounds, and then, we develop an improved combinatorial Benders decomposition algorithm (Algorithm ICBD) with new local search strategies, Benders cuts, and acceleration procedures. To verify the effectiveness of our proposed model and algorithms, we conduct extensive computational experiments, and the results show that our proposed EMIP model is significantly better than the existing mixed integer program model; the percentages of instances that can obtain feasible and optimal solutions are increased from 82.42% to 100% and from 29.17% to 43.5%, respectively, whereas the average gap is decreased from 19.81% to 5.64%. In addition, our proposed Algorithm ICBD can get 100% of feasible solutions and 65.92% of optimal solutions for all of the test instances, and the average gap is only 1.49%. Moreover, compared with existing Benders decomposition methods for this problem, our approach yields comparatively better solutions in notably shorter average computational time when run in the same computational environment. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This research was supported by the National Natural Science Foundation Council of China [Grants 72401214, 92167206, 7221101377, 72471169, and 72231005], the Ministry of Education of China [Grant 24YJC630078], and Computation and Analytics of Complex Management Systems (Tianjin University). This research was also supported by the Tianjin Natural Science Foundation Project [Grant 23JCQNJC01900] and the Tianjin Philosophy and Social Science Planning Project [Grant TJGL21-016]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0279 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0279 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
隐形曼青应助哈哈哈采纳,获得10
刚刚
1秒前
sdysdbd完成签到 ,获得积分10
2秒前
共享精神应助wsqg123采纳,获得10
2秒前
2秒前
2秒前
芒狗发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
铁观音发布了新的文献求助10
3秒前
超级李包包关注了科研通微信公众号
3秒前
上官若男应助鲤鱼酸奶采纳,获得10
4秒前
善学以致用应助小巧冷菱采纳,获得50
4秒前
5秒前
5秒前
vane发布了新的文献求助10
5秒前
刘明升发布了新的文献求助10
5秒前
芭温行由发布了新的文献求助10
6秒前
7秒前
活泼学生完成签到,获得积分10
7秒前
安平发布了新的文献求助10
7秒前
思源应助君无邪采纳,获得10
7秒前
这瓜不卖发布了新的文献求助10
7秒前
8秒前
堇瓜完成签到 ,获得积分10
8秒前
8秒前
Vegetable_Dog发布了新的文献求助10
9秒前
9秒前
英姑应助爱撒娇的朋友采纳,获得10
10秒前
俊秀的笑槐发布了新的文献求助100
10秒前
10秒前
10秒前
Suraim完成签到,获得积分10
11秒前
11秒前
Suc完成签到,获得积分10
11秒前
11秒前
ce完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906