亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnostic performance of DCE-MRI radiomics in predicting axillary lymph node metastasis in breast cancer patients: A meta-analysis

诊断优势比 荟萃分析 医学 乳腺癌 诊断试验中的似然比 置信区间 接收机工作特性 科克伦图书馆 优势比 子群分析 肿瘤科 磁共振成像 转移 无线电技术 内科学 淋巴血管侵犯 腋窝淋巴结 前哨淋巴结 癌症 放射科
作者
Fei Dong,Jie Li,Junbo Wang,Xiaohui Yang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (12): e0314653-e0314653 被引量:2
标识
DOI:10.1371/journal.pone.0314653
摘要

Radiomics offers a novel strategy for the differential diagnosis, prognosis evaluation, and prediction of treatment responses in breast cancer. Studies have explored radiomic signatures from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting axillary lymph node metastasis (ALNM) and sentinel lymph node metastasis (SLNM), but the diagnostic accuracy varies widely. To evaluate this performance, we conducted a meta-analysis performing a comprehensive literature search across databases including PubMed, EMBASE, SCOPUS, Web of Science (WOS), Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Data, and the Chinese BioMedical Literature Database (CBM) until March 31, 2024. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the receiver operating characteristic curve (AUC) were calculated. Twenty-four eligible studies encompassing 5588 breast cancer patients were included in the meta-analysis. The meta-analysis yielded a pooled sensitivity of 0.81 (95% confidence interval [CI]: 0.77–0.84), specificity of 0.85 (95%CI: 0.81–0.87), PLR of 5.24 (95%CI: 4.32–6.34), NLR of 0.23 (95%CI: 0.19–0.27), DOR of 23.16 (95%CI: 17.20–31.19), and AUC of 0.90 (95%CI: 0.87–0.92), indicating good diagnostic performance. Significant heterogeneity was observed in analyses of sensitivity (I 2 = 74.64%) and specificity (I 2 = 83.18%). Spearman’s correlation coefficient suggested no significant threshold effect (P = 0.538). Meta-regression and subgroup analyses identified several potential heterogeneity sources, including data source, integration of clinical factors and peritumor features, MRI equipment, magnetic field strength, lesion segmentation, and modeling methods. In conclusion, DCE-MRI radiomic models exhibit good diagnostic performance in predicting ALNM and SLNM in breast cancer. This non-invasive and effective tool holds potential for the preoperative diagnosis of lymph node metastasis in breast cancer patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
Ecokarster完成签到,获得积分10
2秒前
酷奔发布了新的文献求助10
7秒前
李爱国应助shiyan_39采纳,获得10
8秒前
马佳音完成签到 ,获得积分10
10秒前
无私雅柏完成签到 ,获得积分10
10秒前
hyyyh发布了新的文献求助10
22秒前
31秒前
糖伯虎完成签到 ,获得积分10
32秒前
35秒前
自然妙竹发布了新的文献求助10
40秒前
ceeray23应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
ceeray23应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
充电宝应助科研通管家采纳,获得10
44秒前
YifanWang应助科研通管家采纳,获得10
44秒前
我是老大应助科研通管家采纳,获得10
44秒前
ceeray23应助科研通管家采纳,获得10
44秒前
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助小小鹿采纳,获得10
1分钟前
1分钟前
郝誉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小小鹿发布了新的文献求助10
1分钟前
1分钟前
okko完成签到,获得积分10
2分钟前
Hello应助sdndkjfvb采纳,获得10
2分钟前
啦啦啦完成签到,获得积分10
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
2分钟前
Crisp完成签到 ,获得积分10
2分钟前
科研通AI6应助caoju采纳,获得10
2分钟前
2分钟前
阿文完成签到 ,获得积分10
2分钟前
hyyyh完成签到,获得积分10
2分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598515
关于积分的说明 14464275
捐赠科研通 4532106
什么是DOI,文献DOI怎么找? 2483837
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439695