角膜新生血管
纤维化
医学
炎症
新生血管
血管内皮生长因子
巨噬细胞极化
M2巨噬细胞
角膜炎症
血管生成
角膜
免疫学
病理
癌症研究
巨噬细胞
眼科
生物
血管内皮生长因子受体
体外
生物化学
作者
Chun‐Hsiang Chang,I‐Chen Peng,Yi-Hsun Huang
摘要
Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization. Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1. The effects of rTMD1 on macrophage polarization, inflammatory response, tissue repair, fibrosis, and neovascularization were assessed through histological analysis, immunohistochemistry, and molecular studies targeting key signaling pathways such as ERK/HIF-1α and vascular endothelial growth factor (VEGF) expression. Results: Administration of rTMD1 significantly modulated macrophage polarization, promoting a transition from the pro-inflammatory M1 phenotype to the reparative M2 phenotype via inhibition of the ERK/HIF-1α pathway. This shift resulted in reduced inflammation, enhanced tissue repair, and controlled fibrosis. Furthermore, rTMD1 inhibited neovascularization by downregulating VEGF expression, aiding in the preservation of corneal clarity. Conclusions: rTMD1 demonstrates substantial therapeutic potential in treating corneal alkali burns by reducing inflammation, promoting tissue repair, controlling fibrosis, and inhibiting neovascularization. These findings support the further development of rTMD1 as a promising treatment for corneal burns and possibly other inflammatory ocular conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI