亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VSPNet: A vehicle speed prediction model incorporating transformer and BiLSTM

编码器 变压器 杠杆(统计) 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 工程类 电压 语言学 操作系统 电气工程 哲学
作者
Qinglin Zhu,Dehui Chen,Zhangu Wang,Baibing Lv,Ziliang Zhao,Jun Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada3eb
摘要

Abstract In recent years, with the increasing adoption of hybrid vehicles, energy management strategies 
have become a prominent research focus. Accurate Vehicle Speed Prediction (VSP) is a critical 
prerequisite for achieving optimal results in predictive energy management strategies. However, 
existing speed prediction algorithms fail to fully leverage vehicle data to enhance prediction 
accuracy. Therefore, a novel Vehicle Speed Prediction Net (VSPNet) is proposed in this study. 
Firstly, we constructed a combined cycle condition for model training through comprehensive 
analysis and analysed the vehicle feature parameters through the Random Forest (RF) algorithm 
and Pearson correlation analysis to select the best input feature parameters. Then a VSPNet 
speed prediction model is proposed based on the Transformer model. In the encoder part, firstly, 
by assigning weights to the input feature parameters and incorporating the temporal attention 
mechanism, the model is made to make better use of the input features from two dimensions, 
and at the same time the Transformer model's encoder based on positional coding combined 
with Bi-directional Long Short-Term Memory (BiLSTM) belonging to Recurrent Neural 
Networks(RNN), which is used as a decoder to better catch and handle long-term dependencies 
in sequence data. Finally, a comparative experiment between VSPNet and the classical speed 
prediction models was carried out. The proposed VSPNet model reduces the RMSE by 37%, 
22%, and 20% and MAE by 39%, 25, and 24% compared to the LSTM model for the prediction 
time horizons of 3s, 5s, and 8s. The RMSE is reduced by 47%, 28%, and 7%, and the MAE is 
reduced by 47%, 30, and 9% compared to the Transformer model for the prediction time 
horizons of 3s, 5s, and 8s. The experimental results demonstrate the superiority of this speed 
prediction model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得20
1秒前
明明完成签到,获得积分10
3秒前
Ariel完成签到 ,获得积分10
3秒前
慕青应助典雅媚颜采纳,获得10
4秒前
可爱的函函应助这样说话采纳,获得10
4秒前
6秒前
9秒前
yang发布了新的文献求助10
11秒前
梅思寒完成签到 ,获得积分10
11秒前
22秒前
23秒前
张杰列夫完成签到 ,获得积分10
25秒前
华仔应助你hao采纳,获得10
26秒前
lin发布了新的文献求助10
26秒前
qingcahng发布了新的文献求助30
29秒前
lin完成签到,获得积分10
32秒前
34秒前
35秒前
祎祎完成签到,获得积分10
36秒前
36秒前
喻贡金发布了新的文献求助10
38秒前
你hao发布了新的文献求助10
39秒前
112完成签到,获得积分20
40秒前
ilk666完成签到,获得积分10
44秒前
所所应助葛浩采纳,获得10
45秒前
你hao完成签到,获得积分10
52秒前
斯文败类应助欢呼宛秋采纳,获得10
53秒前
54秒前
科目三应助喻贡金采纳,获得10
54秒前
56秒前
许三问完成签到 ,获得积分0
56秒前
59秒前
qingcahng完成签到,获得积分10
59秒前
葛浩发布了新的文献求助10
1分钟前
阿泽完成签到,获得积分10
1分钟前
1分钟前
1分钟前
葛浩关注了科研通微信公众号
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657824
求助须知:如何正确求助?哪些是违规求助? 4812668
关于积分的说明 15080373
捐赠科研通 4816006
什么是DOI,文献DOI怎么找? 2577043
邀请新用户注册赠送积分活动 1532043
关于科研通互助平台的介绍 1490584