VSPNet: A vehicle speed prediction model incorporating transformer and BiLSTM

编码器 变压器 杠杆(统计) 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 工程类 电压 语言学 操作系统 电气工程 哲学
作者
Qinglin Zhu,Dehui Chen,Zhangu Wang,Baibing Lv,Ziliang Zhao,Jun Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada3eb
摘要

Abstract In recent years, with the increasing adoption of hybrid vehicles, energy management strategies 
have become a prominent research focus. Accurate Vehicle Speed Prediction (VSP) is a critical 
prerequisite for achieving optimal results in predictive energy management strategies. However, 
existing speed prediction algorithms fail to fully leverage vehicle data to enhance prediction 
accuracy. Therefore, a novel Vehicle Speed Prediction Net (VSPNet) is proposed in this study. 
Firstly, we constructed a combined cycle condition for model training through comprehensive 
analysis and analysed the vehicle feature parameters through the Random Forest (RF) algorithm 
and Pearson correlation analysis to select the best input feature parameters. Then a VSPNet 
speed prediction model is proposed based on the Transformer model. In the encoder part, firstly, 
by assigning weights to the input feature parameters and incorporating the temporal attention 
mechanism, the model is made to make better use of the input features from two dimensions, 
and at the same time the Transformer model's encoder based on positional coding combined 
with Bi-directional Long Short-Term Memory (BiLSTM) belonging to Recurrent Neural 
Networks(RNN), which is used as a decoder to better catch and handle long-term dependencies 
in sequence data. Finally, a comparative experiment between VSPNet and the classical speed 
prediction models was carried out. The proposed VSPNet model reduces the RMSE by 37%, 
22%, and 20% and MAE by 39%, 25, and 24% compared to the LSTM model for the prediction 
time horizons of 3s, 5s, and 8s. The RMSE is reduced by 47%, 28%, and 7%, and the MAE is 
reduced by 47%, 30, and 9% compared to the Transformer model for the prediction time 
horizons of 3s, 5s, and 8s. The experimental results demonstrate the superiority of this speed 
prediction model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明世倌完成签到 ,获得积分10
刚刚
香蕉静芙发布了新的文献求助10
刚刚
绪安然完成签到,获得积分10
1秒前
lucas完成签到,获得积分10
1秒前
1秒前
CXE发布了新的文献求助10
1秒前
冷月完成签到,获得积分10
1秒前
xie完成签到,获得积分20
2秒前
时尚的傲霜完成签到,获得积分10
2秒前
奋斗水香完成签到,获得积分10
2秒前
孔问筠完成签到,获得积分0
2秒前
Orange应助Dream采纳,获得10
4秒前
4秒前
yeeming应助zy采纳,获得10
5秒前
5秒前
5秒前
狂野世立完成签到,获得积分10
5秒前
胡小溪完成签到,获得积分10
6秒前
6秒前
Donby完成签到,获得积分10
6秒前
6秒前
Liyiheng完成签到,获得积分10
6秒前
ss完成签到,获得积分10
7秒前
Hello应助小叶子采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
Xiaoxiannv发布了新的文献求助10
8秒前
yan完成签到,获得积分10
9秒前
陆离完成签到 ,获得积分10
9秒前
woshidahunzi完成签到,获得积分10
9秒前
Muncy完成签到 ,获得积分10
9秒前
薯条完成签到,获得积分10
9秒前
9秒前
mmmm完成签到,获得积分10
9秒前
李晓龙发布了新的文献求助10
10秒前
10秒前
wangqiuyue发布了新的文献求助10
10秒前
nannannan发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510332
求助须知:如何正确求助?哪些是违规求助? 4605039
关于积分的说明 14492282
捐赠科研通 4540182
什么是DOI,文献DOI怎么找? 2487851
邀请新用户注册赠送积分活动 1470038
关于科研通互助平台的介绍 1442567