VSPNet: A vehicle speed prediction model incorporating transformer and BiLSTM

编码器 变压器 杠杆(统计) 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 工程类 电压 电气工程 语言学 哲学 操作系统
作者
Qinglin Zhu,Dehui Chen,Zhangu Wang,Baibing Lv,Ziliang Zhao,Jun Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada3eb
摘要

Abstract In recent years, with the increasing adoption of hybrid vehicles, energy management strategies 
have become a prominent research focus. Accurate Vehicle Speed Prediction (VSP) is a critical 
prerequisite for achieving optimal results in predictive energy management strategies. However, 
existing speed prediction algorithms fail to fully leverage vehicle data to enhance prediction 
accuracy. Therefore, a novel Vehicle Speed Prediction Net (VSPNet) is proposed in this study. 
Firstly, we constructed a combined cycle condition for model training through comprehensive 
analysis and analysed the vehicle feature parameters through the Random Forest (RF) algorithm 
and Pearson correlation analysis to select the best input feature parameters. Then a VSPNet 
speed prediction model is proposed based on the Transformer model. In the encoder part, firstly, 
by assigning weights to the input feature parameters and incorporating the temporal attention 
mechanism, the model is made to make better use of the input features from two dimensions, 
and at the same time the Transformer model's encoder based on positional coding combined 
with Bi-directional Long Short-Term Memory (BiLSTM) belonging to Recurrent Neural 
Networks(RNN), which is used as a decoder to better catch and handle long-term dependencies 
in sequence data. Finally, a comparative experiment between VSPNet and the classical speed 
prediction models was carried out. The proposed VSPNet model reduces the RMSE by 37%, 
22%, and 20% and MAE by 39%, 25, and 24% compared to the LSTM model for the prediction 
time horizons of 3s, 5s, and 8s. The RMSE is reduced by 47%, 28%, and 7%, and the MAE is 
reduced by 47%, 30, and 9% compared to the Transformer model for the prediction time 
horizons of 3s, 5s, and 8s. The experimental results demonstrate the superiority of this speed 
prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ylq发布了新的文献求助10
1秒前
1秒前
阳光的羊发布了新的文献求助10
2秒前
李爱国应助YY采纳,获得10
3秒前
果果完成签到 ,获得积分10
3秒前
动听无声发布了新的文献求助10
3秒前
Carry发布了新的文献求助10
4秒前
Profeto发布了新的文献求助10
5秒前
刻苦的达完成签到,获得积分10
5秒前
wanci应助冯123采纳,获得10
6秒前
7秒前
7秒前
一手灵魂完成签到,获得积分10
8秒前
欢檬应助如意秋珊采纳,获得10
9秒前
9秒前
9秒前
可爱的函函应助Tewd采纳,获得10
10秒前
orixero应助拼搏惜金采纳,获得10
10秒前
大狒狒发布了新的文献求助10
11秒前
爹爹发布了新的文献求助10
11秒前
殴打阿达发布了新的文献求助10
13秒前
缥缈耷完成签到,获得积分10
14秒前
YY完成签到,获得积分10
14秒前
颖儿发布了新的文献求助10
14秒前
nickel发布了新的文献求助20
14秒前
qcf完成签到 ,获得积分10
14秒前
科研通AI2S应助Carry采纳,获得10
15秒前
YY完成签到,获得积分10
15秒前
17秒前
漂亮夏兰完成签到 ,获得积分10
18秒前
LI完成签到 ,获得积分10
19秒前
KEQIN应助ShengzhangLiu采纳,获得10
20秒前
LaTeXer应助干净的烧鹅采纳,获得50
20秒前
善学以致用应助阳光的羊采纳,获得10
21秒前
染东完成签到,获得积分10
22秒前
111111发布了新的文献求助10
22秒前
22秒前
殴打阿达完成签到,获得积分10
22秒前
zzzyyyuuu完成签到 ,获得积分10
23秒前
动听无声完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425