VSPNet: A vehicle speed prediction model incorporating transformer and BiLSTM

编码器 变压器 杠杆(统计) 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 工程类 电压 语言学 操作系统 电气工程 哲学
作者
Qinglin Zhu,Dehui Chen,Zhangu Wang,Baibing Lv,Ziliang Zhao,Jun Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada3eb
摘要

Abstract In recent years, with the increasing adoption of hybrid vehicles, energy management strategies 
have become a prominent research focus. Accurate Vehicle Speed Prediction (VSP) is a critical 
prerequisite for achieving optimal results in predictive energy management strategies. However, 
existing speed prediction algorithms fail to fully leverage vehicle data to enhance prediction 
accuracy. Therefore, a novel Vehicle Speed Prediction Net (VSPNet) is proposed in this study. 
Firstly, we constructed a combined cycle condition for model training through comprehensive 
analysis and analysed the vehicle feature parameters through the Random Forest (RF) algorithm 
and Pearson correlation analysis to select the best input feature parameters. Then a VSPNet 
speed prediction model is proposed based on the Transformer model. In the encoder part, firstly, 
by assigning weights to the input feature parameters and incorporating the temporal attention 
mechanism, the model is made to make better use of the input features from two dimensions, 
and at the same time the Transformer model's encoder based on positional coding combined 
with Bi-directional Long Short-Term Memory (BiLSTM) belonging to Recurrent Neural 
Networks(RNN), which is used as a decoder to better catch and handle long-term dependencies 
in sequence data. Finally, a comparative experiment between VSPNet and the classical speed 
prediction models was carried out. The proposed VSPNet model reduces the RMSE by 37%, 
22%, and 20% and MAE by 39%, 25, and 24% compared to the LSTM model for the prediction 
time horizons of 3s, 5s, and 8s. The RMSE is reduced by 47%, 28%, and 7%, and the MAE is 
reduced by 47%, 30, and 9% compared to the Transformer model for the prediction time 
horizons of 3s, 5s, and 8s. The experimental results demonstrate the superiority of this speed 
prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周洋完成签到,获得积分10
2秒前
taoxz521完成签到 ,获得积分10
2秒前
3秒前
3秒前
6秒前
小马甲应助嗯嗯哈哈采纳,获得10
7秒前
温臻发布了新的文献求助10
7秒前
zzz完成签到,获得积分10
8秒前
8秒前
黑黑发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
xaogny完成签到,获得积分10
11秒前
HEIKU应助谷粱灵薇采纳,获得30
12秒前
薛定谔的猫应助谷粱灵薇采纳,获得10
12秒前
14秒前
14秒前
15秒前
15秒前
调研昵称发布了新的文献求助10
16秒前
科研通AI2S应助宓不尤采纳,获得10
17秒前
taoxz521发布了新的文献求助10
17秒前
csh_uyu发布了新的文献求助10
18秒前
嗯嗯哈哈发布了新的文献求助10
19秒前
19秒前
温臻完成签到,获得积分10
21秒前
斯文败类应助养蚊子采纳,获得20
22秒前
科研通AI2S应助博修采纳,获得10
23秒前
24秒前
科研通AI2S应助YDSG采纳,获得10
24秒前
24秒前
哈哈哈发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
小二郎应助Umar采纳,获得10
29秒前
30秒前
钩子89完成签到,获得积分10
30秒前
爱学习的小花生完成签到,获得积分10
30秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386059
求助须知:如何正确求助?哪些是违规求助? 2999328
关于积分的说明 8784622
捐赠科研通 2685066
什么是DOI,文献DOI怎么找? 1470817
科研通“疑难数据库(出版商)”最低求助积分说明 679970
邀请新用户注册赠送积分活动 672467