亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VSPNet: A vehicle speed prediction model incorporating transformer and BiLSTM

编码器 变压器 杠杆(统计) 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 工程类 电压 电气工程 语言学 哲学 操作系统
作者
Qinglin Zhu,Dehui Chen,Zhangu Wang,Baibing Lv,Ziliang Zhao,Jun Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada3eb
摘要

Abstract In recent years, with the increasing adoption of hybrid vehicles, energy management strategies 
have become a prominent research focus. Accurate Vehicle Speed Prediction (VSP) is a critical 
prerequisite for achieving optimal results in predictive energy management strategies. However, 
existing speed prediction algorithms fail to fully leverage vehicle data to enhance prediction 
accuracy. Therefore, a novel Vehicle Speed Prediction Net (VSPNet) is proposed in this study. 
Firstly, we constructed a combined cycle condition for model training through comprehensive 
analysis and analysed the vehicle feature parameters through the Random Forest (RF) algorithm 
and Pearson correlation analysis to select the best input feature parameters. Then a VSPNet 
speed prediction model is proposed based on the Transformer model. In the encoder part, firstly, 
by assigning weights to the input feature parameters and incorporating the temporal attention 
mechanism, the model is made to make better use of the input features from two dimensions, 
and at the same time the Transformer model's encoder based on positional coding combined 
with Bi-directional Long Short-Term Memory (BiLSTM) belonging to Recurrent Neural 
Networks(RNN), which is used as a decoder to better catch and handle long-term dependencies 
in sequence data. Finally, a comparative experiment between VSPNet and the classical speed 
prediction models was carried out. The proposed VSPNet model reduces the RMSE by 37%, 
22%, and 20% and MAE by 39%, 25, and 24% compared to the LSTM model for the prediction 
time horizons of 3s, 5s, and 8s. The RMSE is reduced by 47%, 28%, and 7%, and the MAE is 
reduced by 47%, 30, and 9% compared to the Transformer model for the prediction time 
horizons of 3s, 5s, and 8s. The experimental results demonstrate the superiority of this speed 
prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
11秒前
CCccCCC发布了新的文献求助10
13秒前
叙温雨发布了新的文献求助10
15秒前
烟消云散完成签到,获得积分10
32秒前
英俊的铭应助叙温雨采纳,获得10
39秒前
Orange应助xlj采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
1分钟前
爆米花应助芝士采纳,获得10
1分钟前
王馨雨完成签到,获得积分10
1分钟前
hll完成签到,获得积分10
1分钟前
1分钟前
xlj发布了新的文献求助10
1分钟前
1分钟前
zly完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助xxl采纳,获得10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
henry应助TX采纳,获得100
1分钟前
1分钟前
小李子发布了新的文献求助10
2分钟前
Spice完成签到 ,获得积分10
2分钟前
2分钟前
Joshua发布了新的文献求助10
2分钟前
2分钟前
开胃咖喱完成签到,获得积分10
2分钟前
shooley发布了新的文献求助10
2分钟前
hyx完成签到 ,获得积分10
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
3分钟前
冬日可爱发布了新的文献求助10
3分钟前
Akim应助叙温雨采纳,获得10
3分钟前
一只小喵完成签到,获得积分10
3分钟前
3分钟前
baolong完成签到,获得积分10
3分钟前
xxl发布了新的文献求助10
3分钟前
shooley完成签到,获得积分10
4分钟前
粥粥完成签到 ,获得积分10
4分钟前
草木完成签到 ,获得积分10
4分钟前
英俊的铭应助冬日可爱采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291940
求助须知:如何正确求助?哪些是违规求助? 4442703
关于积分的说明 13830302
捐赠科研通 4325936
什么是DOI,文献DOI怎么找? 2374538
邀请新用户注册赠送积分活动 1369853
关于科研通互助平台的介绍 1334214