已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VSPNet: A vehicle speed prediction model incorporating transformer and BiLSTM

编码器 变压器 杠杆(统计) 计算机科学 人工智能 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 工程类 电压 语言学 操作系统 电气工程 哲学
作者
Qinglin Zhu,Dehui Chen,Zhangu Wang,Baibing Lv,Ziliang Zhao,Jun Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada3eb
摘要

Abstract In recent years, with the increasing adoption of hybrid vehicles, energy management strategies 
have become a prominent research focus. Accurate Vehicle Speed Prediction (VSP) is a critical 
prerequisite for achieving optimal results in predictive energy management strategies. However, 
existing speed prediction algorithms fail to fully leverage vehicle data to enhance prediction 
accuracy. Therefore, a novel Vehicle Speed Prediction Net (VSPNet) is proposed in this study. 
Firstly, we constructed a combined cycle condition for model training through comprehensive 
analysis and analysed the vehicle feature parameters through the Random Forest (RF) algorithm 
and Pearson correlation analysis to select the best input feature parameters. Then a VSPNet 
speed prediction model is proposed based on the Transformer model. In the encoder part, firstly, 
by assigning weights to the input feature parameters and incorporating the temporal attention 
mechanism, the model is made to make better use of the input features from two dimensions, 
and at the same time the Transformer model's encoder based on positional coding combined 
with Bi-directional Long Short-Term Memory (BiLSTM) belonging to Recurrent Neural 
Networks(RNN), which is used as a decoder to better catch and handle long-term dependencies 
in sequence data. Finally, a comparative experiment between VSPNet and the classical speed 
prediction models was carried out. The proposed VSPNet model reduces the RMSE by 37%, 
22%, and 20% and MAE by 39%, 25, and 24% compared to the LSTM model for the prediction 
time horizons of 3s, 5s, and 8s. The RMSE is reduced by 47%, 28%, and 7%, and the MAE is 
reduced by 47%, 30, and 9% compared to the Transformer model for the prediction time 
horizons of 3s, 5s, and 8s. The experimental results demonstrate the superiority of this speed 
prediction model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助lucaswong采纳,获得10
刚刚
于鱼发布了新的文献求助10
1秒前
2秒前
YHYHYH完成签到,获得积分10
2秒前
Juvenilesy完成签到,获得积分10
3秒前
4秒前
思源应助感动香薇采纳,获得10
4秒前
4秒前
5秒前
6秒前
王某发布了新的文献求助10
8秒前
8秒前
海风发布了新的文献求助10
8秒前
10秒前
稳重口红发布了新的文献求助10
10秒前
小丸子发布了新的文献求助10
11秒前
QwQ发布了新的文献求助10
11秒前
12秒前
羊咩咩哒发布了新的文献求助10
12秒前
追光发布了新的文献求助10
13秒前
13秒前
学术小牛发布了新的文献求助10
14秒前
拼搏凡双发布了新的文献求助10
15秒前
番茄炒蛋完成签到,获得积分20
15秒前
111111发布了新的文献求助10
16秒前
搜集达人应助WZY采纳,获得10
18秒前
王某完成签到,获得积分10
20秒前
番茄炒蛋关注了科研通微信公众号
23秒前
yooga完成签到 ,获得积分10
24秒前
研友_VZG7GZ应助yankel采纳,获得10
25秒前
27秒前
Sake完成签到,获得积分10
29秒前
CodeCraft应助111111采纳,获得10
29秒前
29秒前
太阳完成签到,获得积分20
32秒前
研友_enP05n完成签到,获得积分10
32秒前
WZY发布了新的文献求助10
33秒前
科研通AI6应助橙子雨采纳,获得10
33秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589987
求助须知:如何正确求助?哪些是违规求助? 4674459
关于积分的说明 14793918
捐赠科研通 4629628
什么是DOI,文献DOI怎么找? 2532486
邀请新用户注册赠送积分活动 1501169
关于科研通互助平台的介绍 1468533