Towards Dynamic Message Passing on Graphs

计算机科学 消息代理 信息交换 消息传递 计算机网络 分布式计算
作者
Junshu Sun,Chenxue Yang,Xiangyang Ji,Qingming Huang,Shuhui Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.23686
摘要

Message passing plays a vital role in graph neural networks (GNNs) for effective feature learning. However, the over-reliance on input topology diminishes the efficacy of message passing and restricts the ability of GNNs. Despite efforts to mitigate the reliance, existing study encounters message-passing bottlenecks or high computational expense problems, which invokes the demands for flexible message passing with low complexity. In this paper, we propose a novel dynamic message-passing mechanism for GNNs. It projects graph nodes and learnable pseudo nodes into a common space with measurable spatial relations between them. With nodes moving in the space, their evolving relations facilitate flexible pathway construction for a dynamic message-passing process. Associating pseudo nodes to input graphs with their measured relations, graph nodes can communicate with each other intermediately through pseudo nodes under linear complexity. We further develop a GNN model named $\mathtt{\mathbf{N^2}}$ based on our dynamic message-passing mechanism. $\mathtt{\mathbf{N^2}}$ employs a single recurrent layer to recursively generate the displacements of nodes and construct optimal dynamic pathways. Evaluation on eighteen benchmarks demonstrates the superior performance of $\mathtt{\mathbf{N^2}}$ over popular GNNs. $\mathtt{\mathbf{N^2}}$ successfully scales to large-scale benchmarks and requires significantly fewer parameters for graph classification with the shared recurrent layer.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助调皮元珊采纳,获得10
1秒前
HJJHJH发布了新的文献求助10
4秒前
共享精神应助阿星捌采纳,获得10
7秒前
7秒前
10秒前
LucyMartinez完成签到,获得积分10
12秒前
调皮元珊发布了新的文献求助10
14秒前
mogugu完成签到,获得积分10
14秒前
科研通AI6.1应助荷塘月色采纳,获得10
16秒前
香蕉涫完成签到 ,获得积分10
18秒前
LOTUS发布了新的文献求助10
20秒前
Bugs完成签到,获得积分10
21秒前
26秒前
Anoxia发布了新的文献求助10
28秒前
29秒前
长苼发布了新的文献求助10
29秒前
华仔应助长苼采纳,获得10
40秒前
万松辉完成签到,获得积分10
51秒前
biu完成签到 ,获得积分10
51秒前
52秒前
勇yi完成签到,获得积分10
55秒前
阿星捌发布了新的文献求助10
58秒前
韩韩完成签到 ,获得积分10
1分钟前
无极微光应助张鱼小丸子采纳,获得20
1分钟前
mengli完成签到 ,获得积分10
1分钟前
科研通AI6.1应助阿星捌采纳,获得10
1分钟前
张鱼小丸子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466