Towards Dynamic Message Passing on Graphs

计算机科学 消息代理 信息交换 消息传递 计算机网络 分布式计算
作者
Junshu Sun,Chenxue Yang,Xiangyang Ji,Qingming Huang,Shuhui Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.23686
摘要

Message passing plays a vital role in graph neural networks (GNNs) for effective feature learning. However, the over-reliance on input topology diminishes the efficacy of message passing and restricts the ability of GNNs. Despite efforts to mitigate the reliance, existing study encounters message-passing bottlenecks or high computational expense problems, which invokes the demands for flexible message passing with low complexity. In this paper, we propose a novel dynamic message-passing mechanism for GNNs. It projects graph nodes and learnable pseudo nodes into a common space with measurable spatial relations between them. With nodes moving in the space, their evolving relations facilitate flexible pathway construction for a dynamic message-passing process. Associating pseudo nodes to input graphs with their measured relations, graph nodes can communicate with each other intermediately through pseudo nodes under linear complexity. We further develop a GNN model named $\mathtt{\mathbf{N^2}}$ based on our dynamic message-passing mechanism. $\mathtt{\mathbf{N^2}}$ employs a single recurrent layer to recursively generate the displacements of nodes and construct optimal dynamic pathways. Evaluation on eighteen benchmarks demonstrates the superior performance of $\mathtt{\mathbf{N^2}}$ over popular GNNs. $\mathtt{\mathbf{N^2}}$ successfully scales to large-scale benchmarks and requires significantly fewer parameters for graph classification with the shared recurrent layer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨梦珺完成签到,获得积分10
刚刚
Stella应助yaoyinlin采纳,获得10
刚刚
刚刚
Qing完成签到,获得积分10
刚刚
vc发布了新的文献求助10
刚刚
852应助lyq123456采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
lvlv完成签到,获得积分10
1秒前
Akim应助付付大作战采纳,获得10
1秒前
大力巴完成签到,获得积分10
1秒前
赘婿应助小菜鸟采纳,获得10
1秒前
2秒前
2秒前
夕荀发布了新的文献求助10
2秒前
跳跳熊完成签到,获得积分10
2秒前
在水一方应助勤劳的忆寒采纳,获得10
2秒前
无限的思柔完成签到,获得积分20
2秒前
顺利毕业完成签到,获得积分10
2秒前
杨梦珺发布了新的文献求助10
3秒前
alien52发布了新的文献求助10
3秒前
萌宝发布了新的文献求助10
3秒前
尼古拉耶维奇完成签到,获得积分10
3秒前
华仔应助_Dearlxy采纳,获得10
3秒前
海棠先雪完成签到,获得积分10
3秒前
史迪奇大王完成签到,获得积分10
3秒前
cc完成签到,获得积分10
4秒前
Mende完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
兴十一发布了新的文献求助10
5秒前
魔幻的鹏笑完成签到,获得积分10
5秒前
vc完成签到,获得积分20
5秒前
纳古菌完成签到,获得积分10
5秒前
小勇仔完成签到,获得积分10
6秒前
肖坤完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006