已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning models using multiparametric MRI for preoperative risk stratification in endometrial cancer

危险分层 子宫内膜癌 多参数磁共振成像 分层(种子) 医学 放射科 癌症研究 肿瘤科 癌症 内科学 生物 前列腺癌 种子休眠 植物 发芽 休眠
作者
Vu Pham Thao Vy,Jerry Chin-Wei Chien,Wiwan Irama,Haoyang Wu,Tzu-I Wu,Wei-Yu Chen,Chia-Hao Liang,Truong Nguyen Khanh Hung,Wilson T. Lao,Wing P. Chan
出处
期刊:American Journal of Cancer Research [e-Century Publishing Corporation]
卷期号:14 (11): 5400-5410
标识
DOI:10.62347/maly3908
摘要

This study evaluated the efficacy of machine learning and radiomics of preoperative multiparameter MRIs in predicting low- vs high-risk histopathologic features and early vs advanced FIGO stage (IA vs IB or higher) in endometrial cancer. This retrospective study of patients with endometrial cancer histologically confirmed from 2008 through 2023 excluded those with: (a) previous treatment for endometrial carcinoma, (b) incomplete MRI examinations or low-quality MR images, (c) incomplete pathology reports, (d) non-visualized tumors on MRI, or (e) distant metastases. In total, 110 radiomic features were extracted using commercial PACS built-in software following segmentation after sagittal T2-weighted imaging (T2WI), contrast enhanced T1-weighted imaging (CE-T1WI), and diffusion weighted imaging (DWI). The radiomic features from each imaging sequence were utilized for initial modeling. A combined model, which included features retained from all 3 sequences, was then established. The area under the receiver operating characteristic curve (AUC) determined the efficacy of each model. For 5 specific histopathologic features, the combined model achieved AUCs of 0.87 (95% CI, 0.85-0.90), 0.90 (95% CI, 0.88-0.92), 0.88 (95% CI, 0.87-0.90), 0.88 (95% CI, 0.86-0.92), and 0.87 (95% CI, 0.86-0.90). This model incorporated 38 radiomic features: 12 from T2WI, 17 from CE-T1WI, and 9 from DWI. In conclusion, an MRI radiomics-based model can differentiate between early- and advanced-stage endometrial cancer and between low- and high-risk histologic markers, giving it the potential to predict high risk and stratify preoperative risk in those with endometrial cancer. The findings may aid personalized preoperative assessments to guide clinical decision-making in endometrial cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tumumu完成签到,获得积分10
刚刚
花痴的易真完成签到,获得积分10
3秒前
3秒前
研友_nEWRJ8完成签到,获得积分10
5秒前
YanZhe完成签到,获得积分10
7秒前
聪慧芷巧发布了新的文献求助10
11秒前
颢懿完成签到 ,获得积分10
12秒前
思源应助小狗采纳,获得10
14秒前
Tendency完成签到 ,获得积分10
15秒前
20秒前
快乐排骨汤完成签到 ,获得积分10
20秒前
CipherSage应助yyds采纳,获得10
22秒前
展七完成签到,获得积分10
26秒前
打打应助展七采纳,获得10
29秒前
超级小熊猫完成签到 ,获得积分10
29秒前
糯米糍完成签到,获得积分10
30秒前
lwm不想看文献完成签到 ,获得积分10
31秒前
没有昵称发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
35秒前
无问完成签到,获得积分10
38秒前
斯文败类应助斯文啊斯文采纳,获得10
39秒前
Hello应助蚂蚁Y嘿采纳,获得10
44秒前
早睡能长个完成签到,获得积分10
46秒前
cc应助科研通管家采纳,获得10
48秒前
Magali应助科研通管家采纳,获得30
48秒前
CodeCraft应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
HOO发布了新的文献求助10
53秒前
Seciy完成签到 ,获得积分10
54秒前
如意的芷天完成签到,获得积分10
55秒前
李李李李李完成签到,获得积分10
57秒前
斯文啊斯文完成签到,获得积分20
1分钟前
Mulee完成签到,获得积分20
1分钟前
壮观的谷冬完成签到 ,获得积分10
1分钟前
AFM完成签到 ,获得积分10
1分钟前
1分钟前
pcr163应助Suchus采纳,获得200
1分钟前
ztayx完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959971
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128425
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042