Machine learning models using multiparametric MRI for preoperative risk stratification in endometrial cancer

危险分层 子宫内膜癌 多参数磁共振成像 分层(种子) 医学 放射科 癌症研究 肿瘤科 癌症 内科学 生物 前列腺癌 休眠 植物 种子休眠 发芽
作者
Vu Pham Thao Vy,Jerry Chin-Wei Chien,Wiwan Irama,Haoyang Wu,Tzu-I Wu,Wei-Yu Chen,Chia-Hao Liang,Truong Nguyen Khanh Hung,Wilson T. Lao,Wing P. Chan
出处
期刊:American Journal of Cancer Research [e-Century Publishing Corporation]
卷期号:14 (11): 5400-5410
标识
DOI:10.62347/maly3908
摘要

This study evaluated the efficacy of machine learning and radiomics of preoperative multiparameter MRIs in predicting low- vs high-risk histopathologic features and early vs advanced FIGO stage (IA vs IB or higher) in endometrial cancer. This retrospective study of patients with endometrial cancer histologically confirmed from 2008 through 2023 excluded those with: (a) previous treatment for endometrial carcinoma, (b) incomplete MRI examinations or low-quality MR images, (c) incomplete pathology reports, (d) non-visualized tumors on MRI, or (e) distant metastases. In total, 110 radiomic features were extracted using commercial PACS built-in software following segmentation after sagittal T2-weighted imaging (T2WI), contrast enhanced T1-weighted imaging (CE-T1WI), and diffusion weighted imaging (DWI). The radiomic features from each imaging sequence were utilized for initial modeling. A combined model, which included features retained from all 3 sequences, was then established. The area under the receiver operating characteristic curve (AUC) determined the efficacy of each model. For 5 specific histopathologic features, the combined model achieved AUCs of 0.87 (95% CI, 0.85-0.90), 0.90 (95% CI, 0.88-0.92), 0.88 (95% CI, 0.87-0.90), 0.88 (95% CI, 0.86-0.92), and 0.87 (95% CI, 0.86-0.90). This model incorporated 38 radiomic features: 12 from T2WI, 17 from CE-T1WI, and 9 from DWI. In conclusion, an MRI radiomics-based model can differentiate between early- and advanced-stage endometrial cancer and between low- and high-risk histologic markers, giving it the potential to predict high risk and stratify preoperative risk in those with endometrial cancer. The findings may aid personalized preoperative assessments to guide clinical decision-making in endometrial cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风风完成签到,获得积分10
1秒前
聪慧的正豪应助卡列林采纳,获得10
1秒前
Orange应助Alex采纳,获得10
2秒前
2秒前
wsh12113发布了新的文献求助10
2秒前
3秒前
KEYAN发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
upright完成签到,获得积分10
4秒前
4秒前
落寞的又菡完成签到,获得积分10
5秒前
杨梦珺发布了新的文献求助10
5秒前
5秒前
yj完成签到,获得积分10
6秒前
麦客发布了新的文献求助10
7秒前
yyl发布了新的文献求助10
7秒前
犹豫冰棍完成签到,获得积分10
8秒前
斯文败类应助KEYAN采纳,获得10
8秒前
大白鹅完成签到,获得积分10
8秒前
chi发布了新的文献求助10
9秒前
11秒前
老迟到的威完成签到,获得积分10
11秒前
ding应助刘利文采纳,获得10
11秒前
11秒前
筱奇完成签到,获得积分10
11秒前
12秒前
Hello应助AAAA采纳,获得10
12秒前
13秒前
14秒前
知返发布了新的文献求助10
15秒前
陈同学发布了新的文献求助10
15秒前
赘婿应助小马采纳,获得10
15秒前
kkk发布了新的文献求助10
15秒前
ding应助杨梦珺采纳,获得10
15秒前
乐乐应助wsh12113采纳,获得10
16秒前
沁雪完成签到 ,获得积分20
17秒前
CornellRong发布了新的文献求助10
17秒前
fzzzzlucy发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017581
求助须知:如何正确求助?哪些是违规求助? 4257160
关于积分的说明 13267994
捐赠科研通 4061491
什么是DOI,文献DOI怎么找? 2221358
邀请新用户注册赠送积分活动 1230610
关于科研通互助平台的介绍 1153234