材料科学
阴极
兴奋剂
电池(电)
路径(计算)
钠离子电池
钠
化学工程
离子
理论(学习稳定性)
无机化学
电化学
电极
物理化学
热力学
光电子学
冶金
有机化学
计算机科学
功率(物理)
化学
物理
法拉第效率
机器学习
工程类
程序设计语言
作者
M. Cho,Najma Yaqoob,Jun Ho Yu,Konstantin Köster,A‐Yeon Kim,Hun‐Gi Jung,Kyuwook Ihm,Kug‐Seung Lee,Maxim Avdeev,Hyungsub Kim,Payam Kaghazchi,Seung‐Taek Myung
标识
DOI:10.1002/aenm.202405112
摘要
Abstract Understanding the oxygen‐redox reactions within Mn‐rich layered cathode materials is an important strategy to improve the capacity of sodium‐ion batteries (SIBs) while satisfying the demand for low cost and the use of abundant resources. Nonetheless, the P2‐type Na y [A x Mn 1‐x ]O 2 compositions (where A = electro‐inactive elements) exhibit poor capacity retention and low operation voltage along with a broad voltage hysteresis. In addition, Na y [TM x Mn 1‐x ]O 2 (where TM = transition metal) still suffers from low capacity in the absence of anion redox activity. This investigation introduces Li, Mg, and Ni into the P2‐layered Na x MnO 2 matrix to explore diverse compositional dynamics engineered by density functional theory and ab initio molecular dynamics. The P2‐Na 0.7 [Li 0.1 Mg 0.05 Ni 0.15 Mn 0.7 ]O 2 configuration is optimized, exhibiting enhanced structural and electrochemical stabilities. Operando X‐ray diffraction analyses affirm the preservation of the P2 structure throughout de/sodiation, and comprehensive structural analyses unraveled the complex charge‐compensation mechanisms facilitated by Ni 2+ /Ni 4+ , Mn 3+ /Mn 4+ , and O 2− /(O 2 ) n− redox pairs. Neutron diffraction and nuclear magnetic resonance techniques elucidate the Li migration phenomena within the TM and sodium layers. This research underscores the pivotal role of Li, Mg, and Ni co‐doping in the development of cathode materials, paving the way for SIBs with enhanced electrochemical performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI