Spatially resolved mapping of cells associated with human complex traits

地理 计算机科学
作者
Liyang Song,Wenhao Chen,Junren Hou,Minmin Guo,Jian Yang
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.10.31.24316538
摘要

Abstract Depicting spatial distributions of disease-relevant cells is crucial for understanding disease pathology. Here, we present a method, gsMap, that integrates spatial transcriptomics (ST) data with genome-wide association study (GWAS) summary statistics to map cells to human complex traits, including diseases, in a spatially resolved manner. Using embryonic ST datasets covering 25 organs, we benchmarked gsMap through simulation and by corroborating known trait-associated cells or regions in various organs. Applying gsMap to brain ST data, we revealed that the spatial distribution of glutamatergic neurons (glu-neurons) associated with schizophrenia more closely resembles that for cognitive traits than that for mood traits, such as depression. The schizophrenia-associated glu-neurons were distributed near the dorsal hippocampus, with upregulated calcium signaling and regulation genes, while the depression-associated glu-neurons were distributed near the deep medial prefrontal cortex, with upregulated neuroplasticity genes. Our study provides a method for spatially resolved mapping trait-associated cells and demonstrates the gain of biological insights (e.g., spatial distribution of trait-relevant cells and related signature genes) through these maps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天高任鸟飞完成签到,获得积分10
1秒前
yls完成签到,获得积分10
3秒前
Kismet应助一只猫采纳,获得10
3秒前
明天完成签到,获得积分10
4秒前
大个应助shuzi采纳,获得10
4秒前
5秒前
8秒前
夏青荷发布了新的文献求助10
8秒前
9秒前
wdq完成签到,获得积分20
10秒前
吴晨曦完成签到,获得积分10
11秒前
11秒前
YPP关闭了YPP文献求助
11秒前
12秒前
12秒前
HEIKU应助包容的人生采纳,获得10
13秒前
13秒前
14秒前
16秒前
Ning_完成签到 ,获得积分10
16秒前
爆米花应助诩阽采纳,获得10
16秒前
17秒前
孙小雨发布了新的文献求助10
17秒前
涂涂完成签到,获得积分10
18秒前
hohokuz发布了新的文献求助10
18秒前
18秒前
月儿发布了新的文献求助10
18秒前
Volcano完成签到,获得积分10
19秒前
20秒前
机智达发布了新的文献求助10
20秒前
CipherSage应助米修采纳,获得10
21秒前
ChenHan完成签到,获得积分10
21秒前
22秒前
22秒前
研友_VZG7GZ应助zhong采纳,获得10
23秒前
24秒前
热切菩萨应助wuyu采纳,获得10
24秒前
高高元柏完成签到,获得积分20
24秒前
xzx完成签到 ,获得积分10
24秒前
25秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464150
求助须知:如何正确求助?哪些是违规求助? 3057458
关于积分的说明 9057265
捐赠科研通 2747504
什么是DOI,文献DOI怎么找? 1507379
科研通“疑难数据库(出版商)”最低求助积分说明 696507
邀请新用户注册赠送积分活动 696062