Spatially resolved mapping of cells associated with human complex traits

地理 计算机科学
作者
Liyang Song,Wenhao Chen,Junren Hou,Minmin Guo,Jian Yang
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.10.31.24316538
摘要

Abstract Depicting spatial distributions of disease-relevant cells is crucial for understanding disease pathology. Here, we present a method, gsMap, that integrates spatial transcriptomics (ST) data with genome-wide association study (GWAS) summary statistics to map cells to human complex traits, including diseases, in a spatially resolved manner. Using embryonic ST datasets covering 25 organs, we benchmarked gsMap through simulation and by corroborating known trait-associated cells or regions in various organs. Applying gsMap to brain ST data, we revealed that the spatial distribution of glutamatergic neurons (glu-neurons) associated with schizophrenia more closely resembles that for cognitive traits than that for mood traits, such as depression. The schizophrenia-associated glu-neurons were distributed near the dorsal hippocampus, with upregulated calcium signaling and regulation genes, while the depression-associated glu-neurons were distributed near the deep medial prefrontal cortex, with upregulated neuroplasticity genes. Our study provides a method for spatially resolved mapping trait-associated cells and demonstrates the gain of biological insights (e.g., spatial distribution of trait-relevant cells and related signature genes) through these maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohao完成签到 ,获得积分10
刚刚
完美世界应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
云山万重应助科研通管家采纳,获得10
2秒前
2秒前
cdercder应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得30
2秒前
子车茗应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
晶晶完成签到,获得积分10
3秒前
QZZ完成签到,获得积分10
3秒前
yingying完成签到,获得积分10
4秒前
4秒前
5秒前
丁老三完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
动听的书翠完成签到,获得积分10
6秒前
666发布了新的文献求助10
8秒前
娅娅发布了新的文献求助10
9秒前
yingying发布了新的文献求助10
9秒前
pphu发布了新的文献求助30
10秒前
美满的金连完成签到 ,获得积分10
10秒前
kuku完成签到,获得积分10
10秒前
Lv完成签到,获得积分10
10秒前
阿飞完成签到,获得积分10
10秒前
nino发布了新的文献求助10
10秒前
11秒前
毛头侠发布了新的文献求助10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703