Integrated machine learning to predict the prognosis of lung adenocarcinoma patients based on SARS‐COV‐2 and lung adenocarcinoma crosstalk genes

腺癌 串扰 基因 免疫疗法 免疫系统 转录组 生物 基因签名 比例危险模型 肺癌 生存分析 癌症研究 肿瘤科 医学 免疫学 内科学 基因表达 癌症 遗传学 物理 光学
作者
Yanan Wu,Yishuang Cui,Xuan Zheng,Xuemin Yao,Guogui Sun
出处
期刊:Cancer Science [Wiley]
标识
DOI:10.1111/cas.16384
摘要

Abstract Viruses are widely recognized to be intricately associated with both solid and hematological malignancies in humans. The primary goal of this research is to elucidate the interplay of genes between SARS‐CoV‐2 infection and lung adenocarcinoma (LUAD), with a preliminary investigation into their clinical significance and underlying molecular mechanisms. Transcriptome data for SARS‐CoV‐2 infection and LUAD were sourced from public databases. Differentially expressed genes (DEGs) associated with SARS‐CoV‐2 infection were identified and subsequently overlapped with TCGA‐LUAD DEGs to discern the crosstalk genes (CGs). In addition, CGs pertaining to both diseases were further refined using LUAD TCGA and GEO datasets. Univariate Cox regression was conducted to identify genes associated with LUAD prognosis, and these genes were subsequently incorporated into the construction of a prognosis signature using 10 different machine learning algorithms. Additional investigations, including tumor mutation burden assessment, TME landscape, immunotherapy response assessment, as well as analysis of sensitivity to antitumor drugs, were also undertaken. We discovered the risk stratification based on the prognostic signature revealed that the low‐risk group demonstrated superior clinical outcomes ( p < 0.001). Gene set enrichment analysis results predominantly exhibited enrichment in pathways related to cell cycle. Our analyses also indicated that the low‐risk group displayed elevated levels of infiltration by immunocytes ( p < 0.001) and superior immunotherapy response ( p < 0.001). In our study, we reveal a close association between CGs and the immune microenvironment of LUAD. This provides preliminary insight for further exploring the mechanism and interaction between the two diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李李完成签到,获得积分10
1秒前
超级水壶发布了新的文献求助10
1秒前
1秒前
1秒前
张自信发布了新的文献求助10
3秒前
开灯人和关灯人完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
3秒前
华仔应助qiqi采纳,获得10
4秒前
Rebecca完成签到,获得积分10
4秒前
4秒前
5秒前
Mlwwq发布了新的文献求助10
5秒前
领导范儿应助长情洙采纳,获得10
5秒前
洋洋完成签到,获得积分20
6秒前
Owen应助WY采纳,获得30
6秒前
6秒前
listener完成签到,获得积分10
7秒前
7秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助默默海露采纳,获得10
8秒前
彭于晏应助宝贝采纳,获得10
8秒前
金晶发布了新的文献求助10
9秒前
9秒前
Peter完成签到,获得积分20
9秒前
丰知然应助zhengke924采纳,获得10
9秒前
飘逸晓博完成签到 ,获得积分20
10秒前
coco完成签到 ,获得积分10
10秒前
科研菜鸟发布了新的文献求助10
10秒前
10秒前
大气的乌冬面完成签到,获得积分10
10秒前
10秒前
RUSTY完成签到,获得积分20
10秒前
田様应助11采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762