Integrated machine learning to predict the prognosis of lung adenocarcinoma patients based on SARS‐COV‐2 and lung adenocarcinoma crosstalk genes

腺癌 串扰 基因 免疫疗法 免疫系统 转录组 生物 基因签名 比例危险模型 肺癌 生存分析 癌症研究 肿瘤科 医学 免疫学 内科学 基因表达 癌症 遗传学 物理 光学
作者
Yanan Wu,Yishuang Cui,Xuan Zheng,Xuemin Yao,Guogui Sun
出处
期刊:Cancer Science [Wiley]
标识
DOI:10.1111/cas.16384
摘要

Abstract Viruses are widely recognized to be intricately associated with both solid and hematological malignancies in humans. The primary goal of this research is to elucidate the interplay of genes between SARS‐CoV‐2 infection and lung adenocarcinoma (LUAD), with a preliminary investigation into their clinical significance and underlying molecular mechanisms. Transcriptome data for SARS‐CoV‐2 infection and LUAD were sourced from public databases. Differentially expressed genes (DEGs) associated with SARS‐CoV‐2 infection were identified and subsequently overlapped with TCGA‐LUAD DEGs to discern the crosstalk genes (CGs). In addition, CGs pertaining to both diseases were further refined using LUAD TCGA and GEO datasets. Univariate Cox regression was conducted to identify genes associated with LUAD prognosis, and these genes were subsequently incorporated into the construction of a prognosis signature using 10 different machine learning algorithms. Additional investigations, including tumor mutation burden assessment, TME landscape, immunotherapy response assessment, as well as analysis of sensitivity to antitumor drugs, were also undertaken. We discovered the risk stratification based on the prognostic signature revealed that the low‐risk group demonstrated superior clinical outcomes ( p < 0.001). Gene set enrichment analysis results predominantly exhibited enrichment in pathways related to cell cycle. Our analyses also indicated that the low‐risk group displayed elevated levels of infiltration by immunocytes ( p < 0.001) and superior immunotherapy response ( p < 0.001). In our study, we reveal a close association between CGs and the immune microenvironment of LUAD. This provides preliminary insight for further exploring the mechanism and interaction between the two diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snai1发布了新的文献求助10
刚刚
aaa发布了新的文献求助10
1秒前
cc发布了新的文献求助10
1秒前
务实的一斩完成签到 ,获得积分10
2秒前
喵先生发布了新的文献求助10
2秒前
2秒前
得鹿梦鱼完成签到,获得积分10
2秒前
万能图书馆应助yu采纳,获得10
4秒前
朴素的11应助xingzi123采纳,获得10
4秒前
baiyuecheng发布了新的文献求助10
4秒前
华仔应助QUN采纳,获得10
5秒前
笑点低的梦槐完成签到 ,获得积分10
5秒前
5秒前
王王赵完成签到,获得积分10
5秒前
希望天下0贩的0应助时安采纳,获得10
6秒前
第3行星完成签到 ,获得积分10
6秒前
6秒前
明理的孤容完成签到,获得积分10
6秒前
8秒前
8秒前
Retromer完成签到,获得积分10
8秒前
Mumu发布了新的文献求助10
8秒前
完美的从菡完成签到,获得积分10
9秒前
9秒前
嘻嘻嘻112完成签到,获得积分10
9秒前
今后应助aaa采纳,获得30
10秒前
科研通AI6应助茂茂采纳,获得10
10秒前
SciGPT应助yinghan采纳,获得10
11秒前
orixero应助人形过柱机采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
YIXIN发布了新的文献求助10
12秒前
qq完成签到,获得积分10
12秒前
13秒前
14秒前
yangl完成签到 ,获得积分10
14秒前
15秒前
CR7应助CYH采纳,获得20
15秒前
喵先生完成签到,获得积分10
15秒前
研友_ngqRV8发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531667
求助须知:如何正确求助?哪些是违规求助? 4620468
关于积分的说明 14573518
捐赠科研通 4560191
什么是DOI,文献DOI怎么找? 2498759
邀请新用户注册赠送积分活动 1478669
关于科研通互助平台的介绍 1450015