亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated machine learning to predict the prognosis of lung adenocarcinoma patients based on SARS‐COV‐2 and lung adenocarcinoma crosstalk genes

腺癌 串扰 基因 免疫疗法 免疫系统 转录组 生物 基因签名 比例危险模型 肺癌 生存分析 癌症研究 肿瘤科 医学 免疫学 内科学 基因表达 癌症 遗传学 物理 光学
作者
Yanan Wu,Yishuang Cui,Xuan Zheng,Xuemin Yao,Guogui Sun
出处
期刊:Cancer Science [Wiley]
标识
DOI:10.1111/cas.16384
摘要

Abstract Viruses are widely recognized to be intricately associated with both solid and hematological malignancies in humans. The primary goal of this research is to elucidate the interplay of genes between SARS‐CoV‐2 infection and lung adenocarcinoma (LUAD), with a preliminary investigation into their clinical significance and underlying molecular mechanisms. Transcriptome data for SARS‐CoV‐2 infection and LUAD were sourced from public databases. Differentially expressed genes (DEGs) associated with SARS‐CoV‐2 infection were identified and subsequently overlapped with TCGA‐LUAD DEGs to discern the crosstalk genes (CGs). In addition, CGs pertaining to both diseases were further refined using LUAD TCGA and GEO datasets. Univariate Cox regression was conducted to identify genes associated with LUAD prognosis, and these genes were subsequently incorporated into the construction of a prognosis signature using 10 different machine learning algorithms. Additional investigations, including tumor mutation burden assessment, TME landscape, immunotherapy response assessment, as well as analysis of sensitivity to antitumor drugs, were also undertaken. We discovered the risk stratification based on the prognostic signature revealed that the low‐risk group demonstrated superior clinical outcomes ( p < 0.001). Gene set enrichment analysis results predominantly exhibited enrichment in pathways related to cell cycle. Our analyses also indicated that the low‐risk group displayed elevated levels of infiltration by immunocytes ( p < 0.001) and superior immunotherapy response ( p < 0.001). In our study, we reveal a close association between CGs and the immune microenvironment of LUAD. This provides preliminary insight for further exploring the mechanism and interaction between the two diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Olivia发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
Olivia完成签到,获得积分20
1分钟前
1分钟前
平淡幻枫发布了新的文献求助10
1分钟前
Owen应助平淡幻枫采纳,获得10
2分钟前
lll完成签到,获得积分10
2分钟前
lll发布了新的文献求助10
2分钟前
上官若男应助lll采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
Mindray完成签到,获得积分10
2分钟前
小汤完成签到 ,获得积分10
3分钟前
4分钟前
wangnn发布了新的文献求助30
4分钟前
wangnn完成签到,获得积分10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
隐形曼青应助江彪采纳,获得10
4分钟前
4分钟前
江彪发布了新的文献求助10
4分钟前
4分钟前
一剑白完成签到 ,获得积分10
5分钟前
。。完成签到 ,获得积分10
5分钟前
charliechen完成签到 ,获得积分10
5分钟前
传奇完成签到 ,获得积分10
6分钟前
过时的柚子完成签到,获得积分10
6分钟前
6分钟前
NexusExplorer应助科研通管家采纳,获得10
6分钟前
NexusExplorer应助科研通管家采纳,获得10
6分钟前
白华苍松发布了新的文献求助10
6分钟前
JamesPei应助andrele采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
充电宝应助小鲤鱼在睡觉采纳,获得10
7分钟前
小鲤鱼在睡觉完成签到,获得积分10
7分钟前
7分钟前
andrele发布了新的文献求助30
7分钟前
CHL完成签到 ,获得积分10
8分钟前
情怀应助科研通管家采纳,获得10
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784196
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997