材料科学
金属锂
电解质
锂(药物)
聚合物电解质
铁电性
聚合物
异质结
离子
快离子导体
锂离子电池的纳米结构
金属
纳米技术
光电子学
阳极
电极
离子电导率
复合材料
医学
化学
物理
物理化学
量子力学
电介质
冶金
内分泌学
作者
Jiayao Shan,Rong Gu,Jinting Xu,Shuaiqi Gong,Shuainan Guo,Qunjie Xu,Penghui Shi,Yulin Min
标识
DOI:10.1002/aenm.202405220
摘要
Abstract Solid polymer electrolytes offer great promise for all‐solid‐state batteries, but their advancement is constrained due to the low ionic conductivity at ambient temperature and non‐uniform ion transport, which hampers fast‐charging capabilities. In this study, a ferroelectric heterojunction composite is incorporated into poly(vinylidene difluoride) (PVDF) based solid electrolytes to establish an interfacial electric field that enhances lithium salt dissociation and promotes uniform ion deposition. Electrospun 1D BaTiO 3 nanofibers serve as a long‐range organic/inorganic (polymer/filler) interface for ion transport, while MoSe 2 hydrothermally grown on BaTiO 3 forms Li 2 Se‐rich high‐speed ion conductors. The piezoelectric effect of the ferroelectric material helps suppress lithium dendrite growth by reversing internal charges and reducing local overpotentials. Consequently, the PVBM electrolyte achieves a substantia ionic conductivity of 6.5 × 10 −4 S cm −1 and a Li‐ion transference number of 0.61 at 25 °C. The LiFePO 4 /PVBM/Li solid‐state batteries demonstrate an initial discharge capacity of 146 mAh g −1 at 1 C, with a capacity preservation of 80.2% upon completion of 1200 cycles, and an initial discharge capacity of 110.7 mAh g −1 at 5 C. These findings highlight the prospect of ferroelectric ceramic fillers to significantly improve ion transport and fast‐charging performance in polymer electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI