Proteomic Signature of Body Mass Index and Risk of Type 2 Diabetes

体质指数 2型糖尿病 危险系数 医学 内科学 肥胖 四分位数 腰围 糖尿病 弗雷明翰风险评分 生命银行 生物信息学 内分泌学 生物 置信区间 疾病
作者
Xuan Wang,Hao Ma,Minghao Kou,Yoriko Heianza,Vivian Fonseca,Lu Qi
出处
期刊:Diabetes [American Diabetes Association]
标识
DOI:10.2337/db24-0329
摘要

The obesity diagnosis by body mass index (BMI) exhibits considerable interindividual heterogeneity in metabolic phenotypes and risk of developing type 2 diabetes (T2D). We investigated the association of proteomic signature of BMI and T2D and examined whether the proteomic signature of BMI improves prediction of T2D risk. This study included 41,427 adults in the UK Biobank who were free of T2D at baseline and had complete data on proteomics metrics assessed by antibody based Olink assay. The main exposure was a proteomic BMI score (pro-BMI score) calculated from 67 pre-identified plasma proteins associated with BMI. During a median follow-up of 13.7 years, 2,030 incident events of T2D were documented. We observed that a higher proteomic BMI (pro-BMI) score was significantly associated with a higher risk of T2D independent of actual BMI, waist-to-hip ratio, and polygenic risk score for BMI (hazard ratio (HR) comparing the highest with the lowest quartiles was 3.81, 95% CI, 3.08 – 4.71). Pro- BMI score significantly increased the C index when added to a reference model with age, sex, and BMI (C index change, 0.023 [95%CI, 0.018 to 0.027]). Proteomic signature of BMI is significantly associated with the risk of T2D independent of BMI, WHR and genetic susceptibility to obesity. When added to actual BMI, the proteomic signature of BMI provides significant but modest improvement in discrimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助22采纳,获得10
刚刚
赘婿应助TT采纳,获得10
1秒前
1秒前
1秒前
2秒前
Jenny应助赖道之采纳,获得10
4秒前
依古比古完成签到 ,获得积分10
6秒前
汎影发布了新的文献求助10
6秒前
小二完成签到,获得积分10
6秒前
7秒前
9秒前
顾矜应助长情洙采纳,获得10
9秒前
monere发布了新的文献求助30
9秒前
Xiaoxiao应助汉关采纳,获得10
11秒前
11秒前
汎影完成签到,获得积分10
12秒前
13秒前
Chen发布了新的文献求助10
15秒前
WW完成签到,获得积分10
15秒前
17秒前
hyjcnhyj完成签到,获得积分10
18秒前
英姑应助赖道之采纳,获得10
19秒前
21秒前
研友_LXdbaL发布了新的文献求助30
21秒前
思源应助单薄新烟采纳,获得10
22秒前
22秒前
23秒前
Zz完成签到,获得积分10
23秒前
Prandtl完成签到 ,获得积分10
25秒前
26秒前
zfzf0422完成签到 ,获得积分10
27秒前
上官若男应助jackie采纳,获得10
27秒前
27秒前
我是站长才怪应助Benliu采纳,获得20
28秒前
28秒前
zh20130完成签到,获得积分10
28秒前
28秒前
TT发布了新的文献求助10
29秒前
Star1983发布了新的文献求助10
29秒前
研友_LXdbaL完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808