材料科学
电介质
铁电性
铁电聚合物
电容感应
介电损耗
电容器
介电常数
储能
电场
光电子学
电压
电气工程
热力学
物理
工程类
功率(物理)
量子力学
作者
Jie Chen,Chao Wu,Jingyu Deng,Zhou Ying,Fei Liu,Kunming Shi,Pingkai Jiang,Xingyi Huang
标识
DOI:10.1002/adma.202417072
摘要
Abstract Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric‐like crystals has been developed. The sulfonyl dipoles in the ferroelectric‐like crystals are oriented in the same direction, thereby enabling this polymer to exhibit a considerable dielectric constant (7.5) at room temperature. Notably, when the operating temperature surpasses the polymer's glass transition temperature ( T g ≈ 140 °C), its dielectric constant rises to 12 with just minor changes in the dissipation factor. At 150 °C, 90% efficiency of the discharge energy density reaches as high as 6.76 J cm −1 under a low electric field of 320 MV m −1 , which is ten times that of the state‐of‐the‐art, high‐temperature, capacitor‐grade polyetherimide. The enhancement of high‐temperature capacitive performance, achieved by utilizing the crystallinity of isotactic polymers to form a polar structure, presents a new perspective for the design of high‐temperature dielectric polymers.
科研通智能强力驱动
Strongly Powered by AbleSci AI