Linear Dielectric Polymers with Ferroelectric‐Like Crystals for High‐Temperature Capacitive Energy Storage

材料科学 电介质 铁电性 铁电聚合物 电容感应 介电损耗 电容器 介电常数 储能 电场 光电子学 电压 电气工程 热力学 物理 工程类 功率(物理) 量子力学
作者
Jie Chen,Chao Wu,Jingyu Deng,Zhou Ying,Fei Liu,Kunming Shi,Pingkai Jiang,Xingyi Huang
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (19): e2417072-e2417072 被引量:10
标识
DOI:10.1002/adma.202417072
摘要

Abstract Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric‐like crystals has been developed. The sulfonyl dipoles in the ferroelectric‐like crystals are oriented in the same direction, thereby enabling this polymer to exhibit a considerable dielectric constant (7.5) at room temperature. Notably, when the operating temperature surpasses the polymer's glass transition temperature ( T g ≈ 140 °C), its dielectric constant rises to 12 with just minor changes in the dissipation factor. At 150 °C, 90% efficiency of the discharge energy density reaches as high as 6.76 J cm −1 under a low electric field of 320 MV m −1 , which is ten times that of the state‐of‐the‐art, high‐temperature, capacitor‐grade polyetherimide. The enhancement of high‐temperature capacitive performance, achieved by utilizing the crystallinity of isotactic polymers to form a polar structure, presents a new perspective for the design of high‐temperature dielectric polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
智慧发布了新的文献求助30
刚刚
DTS发布了新的文献求助10
1秒前
YI_JIA_YI完成签到,获得积分10
1秒前
小痞子完成签到 ,获得积分10
1秒前
苗灵雁完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
善学以致用应助超级的鞅采纳,获得10
2秒前
猪猪hero应助elang采纳,获得10
3秒前
weiyi发布了新的文献求助10
4秒前
佩琪完成签到,获得积分10
4秒前
包容秋珊发布了新的文献求助10
4秒前
缥缈的涵菡完成签到 ,获得积分10
5秒前
冷酷的溜溜梅完成签到 ,获得积分10
5秒前
6秒前
kaikai完成签到,获得积分10
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
带善人完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI6应助zhangyulong采纳,获得10
7秒前
爆爆发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
小雨堂完成签到,获得积分10
9秒前
研友_VZG7GZ应助萝卜采纳,获得10
10秒前
10秒前
10秒前
hu123完成签到,获得积分10
11秒前
领导范儿应助DTS采纳,获得10
11秒前
11秒前
moyu37完成签到,获得积分10
11秒前
11秒前
12秒前
李xxxx发布了新的文献求助10
12秒前
愚林2024发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802