亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison of the response-pattern-based faking detection methods.

心理学 响应偏差 社会心理学
作者
Weiwen Nie,Ivan Hernandez,Louis Tay,Bo Zhang,Mengyang Cao
出处
期刊:Journal of Applied Psychology [American Psychological Association]
标识
DOI:10.1037/apl0001261
摘要

The covariance index method, the idiosyncratic item response method, and the machine learning method are the three primary response-pattern-based (RPB) approaches to detect faking on personality tests. However, less is known about how their performance is affected by different practical factors (e.g., scale length, training sample size, proportion of faking participants) and when they perform optimally. In the present study, we systematically compared the three RPB faking detection methods across different conditions in three empirical-data-based resampling studies. Overall, we found that the machine learning method outperforms the other two RPB faking detection methods in most simulation conditions. It was also found that the faking probabilities produced by all three RPB faking detection methods had moderate to strong positive correlations with true personality scores, suggesting that these RPB faking detection methods are likely to misclassify honest respondents with truly high personality trait scores as fakers. Fortunately, we found that the benefit of removing suspicious fakers still outweighs the consequences of misclassification. Finally, we provided practical guidance to researchers and practitioners to optimally implement the machine learning method and offered step-by-step code. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
咖啡豆发布了新的文献求助10
15秒前
mangle完成签到,获得积分10
18秒前
CipherSage应助ZYL采纳,获得10
20秒前
深情安青应助咖啡豆采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
慕青应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
37秒前
42秒前
执着的un琪完成签到 ,获得积分10
1分钟前
1分钟前
恶恶么v完成签到,获得积分10
1分钟前
1分钟前
炸鸡完成签到 ,获得积分10
1分钟前
1分钟前
ZYL发布了新的文献求助10
1分钟前
Simonking应助耍酷的小白菜采纳,获得20
1分钟前
1分钟前
打打应助不想学习鸭采纳,获得10
1分钟前
1分钟前
理想三寻完成签到,获得积分10
1分钟前
顾矜应助1111采纳,获得10
1分钟前
搜集达人应助twk采纳,获得30
1分钟前
1分钟前
Jasper应助眼睛大追命采纳,获得10
2分钟前
2分钟前
邢夏之完成签到 ,获得积分10
2分钟前
Hana完成签到 ,获得积分10
2分钟前
科研通AI2S应助ppppppp_76采纳,获得10
2分钟前
2分钟前
景行行止完成签到 ,获得积分10
2分钟前
尼古丁的味道完成签到 ,获得积分10
2分钟前
2分钟前
1111完成签到,获得积分10
2分钟前
二妹儿发布了新的文献求助10
2分钟前
3分钟前
a7662888完成签到,获得积分0
3分钟前
研友_VZG7GZ应助二妹儿采纳,获得10
3分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381285
求助须知:如何正确求助?哪些是违规求助? 2996186
关于积分的说明 8767725
捐赠科研通 2681403
什么是DOI,文献DOI怎么找? 1468532
科研通“疑难数据库(出版商)”最低求助积分说明 679009
邀请新用户注册赠送积分活动 671109