Printing semiconductor-based devices and circuits for flexible electronic skin

电子线路 半导体 光电子学 半导体器件 材料科学 数码产品 计算机科学 纳米技术 电气工程 工程类 图层(电子)
作者
Abhishek Singh Dahiya,Ayoub Zumeit,Adamos Christou,Alex S. Loch,Balaji Purushothaman,Peter J. Skabara,Ravinder Dahiya
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:11 (4)
标识
DOI:10.1063/5.0217297
摘要

Electronic skin (e-skin), capable of sensing a physical or chemical stimulus and triggering a suitable response, is critical in applications such as healthcare, wearables, robotics, and more. With a substantial number and types of sensors over a large area, the low-cost fabrication is desirable for e-skin. In this regard, printing electronics attract the attention as it allow efficient use of materials, “maskless” fabrication, and low-temperature deposition. Additionally, the use of e-skin in real-time applications calls for faster computation and communication. However, due to limitations of widely used materials (e.g., low mobility) and the printing tools (e.g., poor print resolution), the use of printed electronics has been restricted to passive devices for low-end applications until recent years. Such limitations are now being addressed through high-mobility materials and highlighted in this review article, using e-skin as a vehicle. This paper discusses techniques that allow printing of high-quality electronic layers using inorganic nanostructures, and their further processing to obtain sensors, energy harvesters, and transistors. Specifically, the contact printing, transfer printing, and direct roll printing are discussed along with working mechanisms and the influence of print dynamics. For the sake of completeness, a few examples of organic semiconductor-based devices are also included. E-skin presents a good case for 3D integration of flexible electronics, and therefore, the use of high-resolution printing to connect various devices on a substrate or 3D stack is also discussed. Finally, major challenges hindering the scalability of printing methods and their commercial uptake are discussed along with potential solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
行隐应助galoyoung采纳,获得10
1秒前
烟花应助钱多多采纳,获得10
1秒前
依旧完成签到,获得积分10
1秒前
1秒前
彭于晏应助ll采纳,获得10
2秒前
2秒前
梦初醒处发布了新的文献求助10
3秒前
科研通AI2S应助优雅翎采纳,获得10
3秒前
4秒前
4秒前
4秒前
河河发布了新的文献求助10
5秒前
disciple完成签到,获得积分10
5秒前
Owen应助DreamRunner0410采纳,获得10
7秒前
多啦2642发布了新的文献求助10
9秒前
hwasaa发布了新的文献求助10
9秒前
ll完成签到,获得积分10
10秒前
ddd发布了新的文献求助10
10秒前
11秒前
研友_LB3vXn完成签到,获得积分10
11秒前
manstar关注了科研通微信公众号
12秒前
peterpan关注了科研通微信公众号
13秒前
xinxin发布了新的文献求助10
14秒前
Tao完成签到,获得积分10
14秒前
丰富幻悲完成签到 ,获得积分10
14秒前
称心的新之完成签到,获得积分10
15秒前
互助遵法尚德应助hwasaa采纳,获得10
15秒前
16秒前
bkagyin应助资浩阑采纳,获得10
16秒前
CodeCraft应助Liu Xiaojing采纳,获得30
17秒前
PPP发布了新的文献求助30
17秒前
BQ完成签到,获得积分10
17秒前
liuyiduo发布了新的文献求助10
18秒前
18秒前
19秒前
充电宝应助张瑞彬采纳,获得10
19秒前
20秒前
20秒前
海鲜汤发布了新的文献求助10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227691
求助须知:如何正确求助?哪些是违规求助? 2875664
关于积分的说明 8192122
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373179
科研通“疑难数据库(出版商)”最低求助积分说明 646710
邀请新用户注册赠送积分活动 621181