自动化
透视图(图形)
领域(数学)
财产(哲学)
过程(计算)
开发(拓扑)
计算机科学
催化作用
制造工程
工业工程
工程类
生化工程
人工智能
工艺工程
化学
机械工程
数学
认识论
操作系统
数学分析
哲学
生物化学
纯数学
作者
Hrishikesh Joshi,Nicole Wilde,Thomas S. Asche,Dorit Wolf
标识
DOI:10.1002/cite.202200071
摘要
Abstract Industrial catalyst development is a complex issue that requires optimization of performance, synthesis, costs, and engineering aspects. During the development, structure‐property relations are often used to provide valuable insights into the catalyst. However, conventionally, this process is time‐consuming and costly. Advancements in the field of automation for experimentation, data collection, and simulations have allowed the use of machine learning (ML) strategies for this development. Herein we provide an industrial perspective on ML strategies for the development of solid catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI