亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Urchin-like CoP with Controlled Manganese Doping toward Efficient Hydrogen Evolution Reaction in Both Acid and Alkaline Solution

密度泛函理论 化学 兴奋剂 无机化学 吸附 掺杂剂 吉布斯自由能 分解水 催化作用 物理化学 材料科学 有机化学 计算化学 热力学 光催化 物理 光电子学
作者
Yuancai Ge,Jiyi Chen,Hang Chu,Pei Dong,Steven R. Craig,Pulickel M. Ajayan,Mingxin Ye,Jianfeng Shen
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:6 (11): 15162-15169 被引量:32
标识
DOI:10.1021/acssuschemeng.8b03638
摘要

Splitting water to produce hydrogen through an efficient and low-cost way requires the development of catalysts based on earth-abundant elements. Using d-band theory to modify the band structure, we verified Mn atoms to be potent dopants to greatly reinforce the activity of urchin-like CoP, and this catalyst could reach a current density of 10 mA/cm2 with overpotentials of only 65 and 100 mV in acid and alkaline, which were much superior to that of pristine CoP and close to that of Pt/C catalyst. Also, the outperformance of its durability was tested for 20 h to maintain a current density of 10 mA/cm2. The increments of overpotentials were 2.4 and 1.1 mV in acid and alkaline, respectively. After introducing partial Mn atoms, the density functional theory calculation revealed that the Gibbs free energies of hydrogen adsorption (ΔGads,H) of Mn-doped CoP (−0.07 eV) was much smaller than pristine CoP (−0.157 eV). Furthermore, density of state analysis indicated that the strong interaction between Co atoms and Mn atoms lead the d-band of Co atom to a negative shift, which weakens the forceful adsorption between the hydrogen and Mn-doped CoP and expedited the release of produced hydrogen efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
20秒前
zhangyiyang完成签到,获得积分10
22秒前
哲别发布了新的文献求助10
58秒前
1分钟前
自觉凌蝶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Tameiki发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
kkk完成签到,获得积分10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
3分钟前
5分钟前
daiyu发布了新的文献求助10
5分钟前
yang发布了新的文献求助10
5分钟前
zhangjianzeng完成签到 ,获得积分10
5分钟前
脑洞疼应助daiyu采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Willow完成签到,获得积分10
5分钟前
paradox完成签到 ,获得积分10
6分钟前
6分钟前
科研辣鸡发布了新的文献求助10
6分钟前
yang发布了新的文献求助10
6分钟前
可可完成签到 ,获得积分10
7分钟前
ataybabdallah完成签到,获得积分10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
JamesPei应助雪白小丸子采纳,获得10
9分钟前
123完成签到 ,获得积分10
9分钟前
兔子不想和你说话完成签到,获得积分10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658077
求助须知:如何正确求助?哪些是违规求助? 4816733
关于积分的说明 15080844
捐赠科研通 4816410
什么是DOI,文献DOI怎么找? 2577321
邀请新用户注册赠送积分活动 1532329
关于科研通互助平台的介绍 1490949