Demographic and Symptomatic Features of Voice Disorders and Their Potential Application in Classification Using Machine Learning Algorithms

计算机科学 算法 机器学习 语音识别 人工智能
作者
Sheng-Yang Tsui,Yu Tsao,Chii‐Wann Lin,Shih‐Hau Fang,Feng‐Chuan Lin,Chi‐Te Wang
出处
期刊:Folia Phoniatrica Et Logopaedica [Karger Publishers]
卷期号:70 (3-4): 174-182 被引量:22
标识
DOI:10.1159/000492327
摘要

Studies have used questionnaires of dysphonic symptoms to screen voice disorders. This study investigated whether the differential presentation of demographic and symptomatic features can be applied to computerized classification.We recruited 100 patients with glottic neoplasm, 508 with phonotraumatic lesions, and 153 with unilateral vocal palsy. Statistical analyses revealed significantly different distributions of demographic and symptomatic variables. Machine learning algorithms, including decision tree, linear discriminant analysis, K-nearest neighbors, support vector machine, and artificial neural network, were applied to classify voice disorders.The results showed that demographic features were more effective for detecting neoplastic and phonotraumatic lesions, whereas symptoms were useful for detecting vocal palsy. When combining demographic and symptomatic variables, the artificial neural network achieved the highest accuracy of 83 ± 1.58%, whereas the accuracy achieved by other algorithms ranged from 74 to 82.6%. Decision tree analyses revealed that sex, age, smoking status, sudden onset of dysphonia, and 10-item voice handicap index scores were significant characteristics for classification.This study demonstrated a significant difference in demographic and symptomatic features between glottic neoplasm, phonotraumatic lesions, and vocal palsy. These features may facilitate automatic classification of voice disorders through machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gm9915发布了新的文献求助10
1秒前
心光完成签到,获得积分10
3秒前
科研通AI5应助liangliang采纳,获得10
3秒前
weddcf发布了新的文献求助10
4秒前
ZN发布了新的文献求助10
5秒前
科研通AI5应助tdtk采纳,获得10
5秒前
6秒前
6秒前
ddd完成签到,获得积分20
6秒前
雪上一枝蒿完成签到,获得积分10
8秒前
桐桐应助sue402采纳,获得10
8秒前
lyn关闭了lyn文献求助
9秒前
SYLH应助马瑜笛采纳,获得10
9秒前
10秒前
爆米花应助qiu采纳,获得10
10秒前
11秒前
11秒前
12秒前
NexusExplorer应助小段采纳,获得30
12秒前
15秒前
15秒前
Apricity完成签到,获得积分10
16秒前
打打应助Flow采纳,获得10
17秒前
Pass1on完成签到 ,获得积分10
19秒前
19秒前
雪花不滑发布了新的文献求助10
19秒前
19秒前
刘qqqqq发布了新的文献求助30
20秒前
Ari_Kun完成签到 ,获得积分10
21秒前
pluto应助冷酷新柔采纳,获得10
24秒前
qiu发布了新的文献求助10
25秒前
26秒前
29秒前
30秒前
LXR发布了新的文献求助10
31秒前
33秒前
33秒前
33秒前
sue402发布了新的文献求助10
35秒前
我是老大应助Wqhao采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763195
求助须知:如何正确求助?哪些是违规求助? 3307735
关于积分的说明 10141217
捐赠科研通 3022763
什么是DOI,文献DOI怎么找? 1659311
邀请新用户注册赠送积分活动 792510
科研通“疑难数据库(出版商)”最低求助积分说明 754982