Demographic and Symptomatic Features of Voice Disorders and Their Potential Application in Classification Using Machine Learning Algorithms

计算机科学 算法 机器学习 语音识别 人工智能
作者
Sheng-Yang Tsui,Yu Tsao,Chii‐Wann Lin,Shih‐Hau Fang,Feng‐Chuan Lin,Chi‐Te Wang
出处
期刊:Folia Phoniatrica Et Logopaedica [Karger Publishers]
卷期号:70 (3-4): 174-182 被引量:22
标识
DOI:10.1159/000492327
摘要

Studies have used questionnaires of dysphonic symptoms to screen voice disorders. This study investigated whether the differential presentation of demographic and symptomatic features can be applied to computerized classification.We recruited 100 patients with glottic neoplasm, 508 with phonotraumatic lesions, and 153 with unilateral vocal palsy. Statistical analyses revealed significantly different distributions of demographic and symptomatic variables. Machine learning algorithms, including decision tree, linear discriminant analysis, K-nearest neighbors, support vector machine, and artificial neural network, were applied to classify voice disorders.The results showed that demographic features were more effective for detecting neoplastic and phonotraumatic lesions, whereas symptoms were useful for detecting vocal palsy. When combining demographic and symptomatic variables, the artificial neural network achieved the highest accuracy of 83 ± 1.58%, whereas the accuracy achieved by other algorithms ranged from 74 to 82.6%. Decision tree analyses revealed that sex, age, smoking status, sudden onset of dysphonia, and 10-item voice handicap index scores were significant characteristics for classification.This study demonstrated a significant difference in demographic and symptomatic features between glottic neoplasm, phonotraumatic lesions, and vocal palsy. These features may facilitate automatic classification of voice disorders through machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达的太阳完成签到,获得积分10
刚刚
丘比特应助Shelton采纳,获得10
1秒前
1秒前
1秒前
aaa发布了新的文献求助10
2秒前
老刀完成签到,获得积分10
2秒前
Tushar发布了新的文献求助10
3秒前
bkagyin应助yl采纳,获得10
3秒前
我不爱池鱼应助林希希采纳,获得10
4秒前
4秒前
cindy发布了新的文献求助30
4秒前
愤怒的羿发布了新的文献求助20
4秒前
4秒前
5秒前
瑞雪丰年发布了新的文献求助10
5秒前
6秒前
6秒前
小马哥发布了新的文献求助10
6秒前
7秒前
Stanfuny完成签到,获得积分10
7秒前
罗静完成签到,获得积分10
8秒前
Eazin发布了新的文献求助10
8秒前
esdeath完成签到,获得积分10
8秒前
ZHANGJIAN完成签到 ,获得积分10
8秒前
8秒前
li发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
huangllza发布了新的文献求助10
10秒前
10秒前
10秒前
Ning完成签到,获得积分10
10秒前
太阳下山完成签到 ,获得积分10
10秒前
郭娅楠发布了新的文献求助10
11秒前
852应助gyjk采纳,获得10
11秒前
怨念深重发布了新的文献求助10
12秒前
13秒前
研友_ZGR70n完成签到 ,获得积分10
14秒前
13gly发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751