Cooperative Game Approach to Optimal Merging Sequence and on-Ramp Merging Control of Connected and Automated Vehicles

燃料效率 弹道 最优控制 计算机科学 控制器(灌溉) 控制(管理) 序列(生物学) 方案(数学) 数学优化 控制理论(社会学) 工程类 汽车工程 数学 人工智能 遗传学 生物 物理 数学分析 农学 天文
作者
Shoucai Jing,Fei Hui,Xiangmo Zhao,Jackeline Rios-Torres,Asad J. Khattak
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:20 (11): 4234-4244 被引量:113
标识
DOI:10.1109/tits.2019.2925871
摘要

Vehicle merging is one of the main causes of reduced traffic efficiency, increased risk of collision, and fuel consumption. Connected and automated vehicles (CAVs) can improve traffic efficiency, increase safety, and reduce the negative environmental impacts through effective communication and control. Therefore, to improve the traffic efficiency and reduce the fuel consumption in on-ramp scenarios, this paper addresses the global and optimal coordination of the CAVs in a merging zone. Herein, a cooperative multi-player game-based optimization framework and an algorithm are presented to coordinate vehicles and achieve minimum values for the global pay-off conditions. Fuel consumption, passenger comfort, and travel time within the merging control zone were used as the pay-off conditions. After analyzing the characteristics of the merging control zone and selecting the appropriate control decision duration, multi-player games were decomposed into multiple two-player games. An optimal merging strategy was, thereby, derived from a pay-off matrix, and minimum payoffs were predicted for a number of different potential strategies. The optimal trajectory corresponding to the predicted minimum payoffs was then utilized as the control law to coordinate the vehicles merging. The proposed control scheme derives an optimal merging sequence and an optimal trajectory for each vehicle. The effectiveness of the proposed model is validated through simulation. The proposed controller is compared with two alternative methods to demonstrate its potential to reduce fuel consumption and travel time and to improve passenger comfort and traffic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助丙子哥采纳,获得10
刚刚
orixero应助丙子哥采纳,获得10
刚刚
刚刚
阿靖完成签到,获得积分10
刚刚
研究生end应助小灰采纳,获得200
3秒前
4秒前
4秒前
殷勤的傲南应助小单王采纳,获得10
4秒前
李静怡完成签到,获得积分10
4秒前
深情安青应助makenemore采纳,获得30
5秒前
5秒前
Timo干物类发布了新的文献求助10
6秒前
6秒前
satsuki发布了新的文献求助10
7秒前
27完成签到 ,获得积分10
7秒前
orixero应助平常的半凡采纳,获得10
8秒前
tjpuzhang完成签到 ,获得积分10
8秒前
罗素应助那英采纳,获得10
8秒前
8秒前
9秒前
可爱的函函应助bcxly采纳,获得10
9秒前
9秒前
所所应助阳佟天川采纳,获得10
10秒前
CipherSage应助CYPCYP采纳,获得10
10秒前
1111发布了新的文献求助10
11秒前
小乌龟发布了新的文献求助10
11秒前
Damon完成签到,获得积分10
12秒前
繁荣的世界完成签到,获得积分10
12秒前
kk完成签到,获得积分10
12秒前
mimi发布了新的文献求助10
13秒前
17秒前
CipherSage应助satsuki采纳,获得10
18秒前
深情安青应助aaa采纳,获得10
18秒前
浮游应助外向映雁采纳,获得10
19秒前
所所应助外向映雁采纳,获得10
19秒前
017完成签到,获得积分10
19秒前
20秒前
21秒前
星辰大海应助jiejie采纳,获得10
22秒前
CipherSage应助bcxly采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170083
求助须知:如何正确求助?哪些是违规求助? 4360936
关于积分的说明 13578003
捐赠科研通 4208132
什么是DOI,文献DOI怎么找? 2307955
邀请新用户注册赠送积分活动 1307406
关于科研通互助平台的介绍 1254195