Interpreting temporal fluctuations in resting-state functional connectivity MRI

动态功能连接 无效假设 自回归模型 替代数据 统计假设检验 二元分析 计算机科学 静息状态功能磁共振成像 多元统计 统计推断 计量经济学 非线性系统 人工智能 数学 统计 机器学习 心理学 神经科学 物理 量子力学
作者
Raphaël Liégeois,Timothy O. Laumann,Abraham Z. Snyder,Juan Zhou,B.T. Thomas Yeo
出处
期刊:NeuroImage [Elsevier BV]
卷期号:163: 437-455 被引量:247
标识
DOI:10.1016/j.neuroimage.2017.09.012
摘要

Resting-state functional connectivity is a powerful tool for studying human functional brain networks. Temporal fluctuations in functional connectivity, i.e., dynamic functional connectivity (dFC), are thought to reflect dynamic changes in brain organization and non-stationary switching of discrete brain states. However, recent studies have suggested that dFC might be attributed to sampling variability of static FC. Despite this controversy, a detailed exposition of stationarity and statistical testing of dFC is lacking in the literature. This article seeks an in-depth exploration of these statistical issues at a level appealing to both neuroscientists and statisticians. We first review the statistical notion of stationarity, emphasizing its reliance on ensemble statistics. In contrast, all FC measures depend on sample statistics. An important consequence is that the space of stationary signals is much broader than expected, e.g., encompassing hidden markov models (HMM) widely used to extract discrete brain states. In other words, stationarity does not imply the absence of brain states. We then expound the assumptions underlying the statistical testing of dFC. It turns out that the two popular frameworks - phase randomization (PR) and autoregressive randomization (ARR) - generate stationary, linear, Gaussian null data. Therefore, statistical rejection can be due to non-stationarity, nonlinearity and/or non-Gaussianity. For example, the null hypothesis can be rejected for the stationary HMM due to nonlinearity and non-Gaussianity. Finally, we show that a common form of ARR (bivariate ARR) is susceptible to false positives compared with PR and an adapted version of ARR (multivariate ARR). Application of PR and multivariate ARR to Human Connectome Project data suggests that the stationary, linear, Gaussian null hypothesis cannot be rejected for most participants. However, failure to reject the null hypothesis does not imply that static FC can fully explain dFC. We find that first order AR models explain temporal FC fluctuations significantly better than static FC models. Since first order AR models encode both static FC and one-lag FC, this suggests the presence of dynamical information beyond static FC. Furthermore, even in subjects where the null hypothesis was rejected, AR models explain temporal FC fluctuations significantly better than a popular HMM, suggesting the lack of discrete states (as measured by resting-state fMRI). Overall, our results suggest that AR models are not only useful as a means for generating null data, but may be a powerful tool for exploring the dynamical properties of resting-state fMRI. Finally, we discuss how apparent contradictions in the growing dFC literature might be reconciled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mudiboyang发布了新的文献求助10
刚刚
刚刚
卡戎529完成签到 ,获得积分10
刚刚
SJT完成签到,获得积分10
1秒前
背后城发布了新的文献求助10
1秒前
一朵小鲜花儿完成签到,获得积分10
1秒前
li完成签到,获得积分10
1秒前
guoxuefan完成签到,获得积分10
1秒前
yili完成签到,获得积分10
1秒前
1秒前
甜蜜鹭洋完成签到 ,获得积分10
2秒前
清欢小适完成签到 ,获得积分10
2秒前
科研通AI5应助兔子先生采纳,获得10
2秒前
3秒前
小火苗发布了新的文献求助10
3秒前
3秒前
善学以致用应助孙了了采纳,获得10
3秒前
3秒前
小宇OvO完成签到,获得积分20
3秒前
XCHI完成签到 ,获得积分10
5秒前
fdhineodobh花开富贵完成签到,获得积分10
5秒前
6秒前
小宇OvO发布了新的文献求助10
6秒前
畅快的眼神完成签到 ,获得积分10
7秒前
体贴冰棍应助崔雨旋采纳,获得10
7秒前
科研通AI5应助大雄采纳,获得10
7秒前
金桔儿发布了新的文献求助10
8秒前
8秒前
斯文败类应助mudiboyang采纳,获得10
8秒前
8秒前
大个应助菠萝派采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
spolo完成签到,获得积分20
10秒前
优雅的盼夏完成签到,获得积分10
10秒前
林翊完成签到,获得积分10
10秒前
小兵完成签到,获得积分10
10秒前
快乐丹萱完成签到,获得积分20
10秒前
甜心完成签到,获得积分10
10秒前
良菵发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661640
求助须知:如何正确求助?哪些是违规求助? 3222598
关于积分的说明 9746930
捐赠科研通 2932253
什么是DOI,文献DOI怎么找? 1605569
邀请新用户注册赠送积分活动 757979
科研通“疑难数据库(出版商)”最低求助积分说明 734584