铼
材料科学
卟啉
催化作用
钴
共价键
金属化
联吡啶
法拉第效率
粉末衍射
金属
金属有机骨架
循环伏安法
无机化学
光化学
物理化学
电化学
有机化学
化学
结晶学
晶体结构
电极
冶金
吸附
作者
Eric M. Johnson,Ralf Haiges,Smaranda C. Marinescu
标识
DOI:10.1021/acsami.8b07795
摘要
The incorporation of homogeneous catalysts for CO2 reduction into extended frameworks has been a successful strategy for increasing catalyst lifetime and activity, but the effects of the linkers on catalysis are underexplored. In this work, a novel rhenium bipyridine complex was synthesized for the purpose of designing a covalent-organic framework (COF) with both metalloporphyrin and metal bipyridine moieties. Investigation of the rhenium complex as a homogeneous catalyst shows a faradaic efficiency of 81(8)% for the electrocatalytic conversion of CO2 to CO upon the addition of methanol as the proton source. Treatment of the rhenium complex with tetra(4-aminophenyl)porphyrin under Schiff base conditions produces the desired COF, as indicated by powder X-ray diffraction (PXRD) studies. Metalation of the porphyrins was accomplished through postsynthetic modification with CoCl2 and FeCl3 metal precursors. The retention of the PXRD peaks and appearance of new Co and Fe peaks in the corresponding X-ray photoelectron spectroscopy spectra suggest the successful incorporation of a secondary metal site into the framework. Cyclic voltammetry measurements display increases in current densities when the atmosphere is changed from N2 to CO2. Controlled potential electrolyses show that the cobalt-postmetalated COF has the highest activity toward CO2 reduction, reaching a faradaic efficiency of 18(2)%.
科研通智能强力驱动
Strongly Powered by AbleSci AI