Indexing the Event Calculus: Towards practical human-readable Personal Health Systems

计算机科学 搜索引擎索引 事件演算 事件(粒子物理) 数据科学 情报检索 理论计算机科学 人工智能 量子力学 物理
作者
Nicola Falcionelli,Paolo Sernani,Albert Brugués,Dagmawi Neway Mekuria,Davide Calvaresi,Michael Schumacher,Aldo Franco Dragoni,Stefano Bromuri
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:96: 154-166 被引量:21
标识
DOI:10.1016/j.artmed.2018.10.003
摘要

Personal Health Systems (PHS) are mobile solutions tailored to monitoring patients affected by chronic non communicable diseases. In general, a patient affected by a chronic disease can generate large amounts of events: for example, in Type 1 Diabetic patients generate several glucose events per day, ranging from at least 6 events per day (under normal monitoring) to 288 per day when wearing a continuous glucose monitor (CGM) that samples the blood every 5 minutes for several days. Just by itself, without considering other physiological parameters, it would be impossible for medical doctors to individually and accurately follow every patient, highlighting the need of simple approaches towards querying physiological time series. Achieving this with current technology is not an easy task, as on one hand it cannot be expected that medical doctors have the technical knowledge to query databases and on the other hand these time series include thousands of events, which requires to re-think the way data is indexed. Anyhow, handling data streams efficiently is not enough. Domain experts' knowledge must be explicitly included into PHSs in a way that it can be easily readed and modified by medical staffs. Logic programming represents the perfect programming paradygm to accomplish this task. In this work, an Event Calculus-based reasoning framework to standardize and express domain-knowledge in the form of monitoring rules is suggested, and applied to three different use cases. However, if online monitoring has to be achieved, the reasoning performance must improve dramatically. For this reason, three promising mechanisms to index the Event Calculus Knowledge Base are proposed. All of them are based on different types of tree indexing structures: k-d trees, interval trees and red-black trees. The paper then compares and analyzes the performance of the three indexing techniques, by computing the time needed to check different type of rules (and eventually generating alerts), when the number of recorded events (e.g. values of physiological parameters) increases. The results show that customized jREC performs much better when the event average inter-arrival time is little compared to the checked rule time-window. Instead, where the events are more sparse, the use of k-d trees with standard EC is advisable. Finally, the Multi-Agent paradigm helps to wrap the various components of the system: the reasoning engines represent the agent minds, and the sensors are its body. The said agents have been developed in MAGPIE, a mobile event based Java agent platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助文艺的冬卉采纳,获得10
刚刚
过CCC完成签到,获得积分10
2秒前
2秒前
3秒前
幸福美满完成签到,获得积分20
4秒前
搜集达人应助默默的难破采纳,获得10
4秒前
贼拉瘦的美神完成签到,获得积分10
5秒前
丘比特应助秦雄采纳,获得10
5秒前
zhonglv7应助读书的时候采纳,获得10
6秒前
科研通AI6.1应助王京华采纳,获得30
7秒前
多多完成签到,获得积分10
7秒前
鳗鱼衣完成签到 ,获得积分10
7秒前
dgzsbldtm完成签到,获得积分10
7秒前
melokig发布了新的文献求助10
8秒前
狂野吐司完成签到 ,获得积分10
8秒前
扁舟子完成签到,获得积分10
9秒前
田様应助忐忑的远山采纳,获得10
9秒前
霸气的灯泡完成签到 ,获得积分10
11秒前
gfjh完成签到,获得积分10
11秒前
11秒前
trigger完成签到,获得积分10
11秒前
12秒前
星辰大海应助黑神白了采纳,获得10
12秒前
科研菜菜完成签到,获得积分20
14秒前
曲聋五完成签到 ,获得积分0
14秒前
14秒前
15秒前
15秒前
15秒前
小金完成签到,获得积分10
15秒前
霸气的灯泡关注了科研通微信公众号
16秒前
量子星尘发布了新的文献求助10
17秒前
852应助为神武采纳,获得10
17秒前
去日留痕发布了新的文献求助10
18秒前
Qi36发布了新的文献求助10
19秒前
19秒前
19秒前
眼泪划过面容完成签到,获得积分20
19秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749974
求助须知:如何正确求助?哪些是违规求助? 5461658
关于积分的说明 15365193
捐赠科研通 4889239
什么是DOI,文献DOI怎么找? 2629002
邀请新用户注册赠送积分活动 1577297
关于科研通互助平台的介绍 1533917