Comprehensive evaluation of skeleton features-based fall detection from Microsoft Kinect v2

计算机科学 人工智能 计算机视觉 骨架(计算机编程)
作者
Mona Saleh Alzahrani,Salma Kammoun Jarraya,Hanêne Ben-Abdallah,Manar Salamah Ali
出处
期刊:Signal, Image and Video Processing [Springer Nature]
卷期号:13 (7): 1431-1439 被引量:6
标识
DOI:10.1007/s11760-019-01490-9
摘要

Most of the computer vision applications for human activity recognition exploit the fact that body features calculated from a 3D skeleton increase robustness across persons and can lead to higher performance. However, their success in activity recognition, including falls, depends on the correspondence between the human activities and the used joint/part features. To provide for this correspondence, we experimentally evaluate in this paper skeleton features-based fall detection by comparing fall detection performance for different combinations of skeleton features used in previous related works. We determine the skeleton features that best distinguish fall from non-fall frames, and the best performing classifier. In this endeavor, we followed the classical five steps of supervised machine learning: (1) we collected a learning data composed of 42 fall and 37 non-fall videos from FallFree; (2) we extracted and (3) preprocessed the skeleton data of the training set; (4) we extracted each possible skeleton feature; finally (5) we evaluated all extracted and selected features using two main experiments; one of them based on neighborhood component analysis (NCA). In this evaluation, we show that fall detection based on skeleton features has very encouraging accuracy that varies depending on the used features. More specifically, we recommend the following features: 12 features that resulted from NCA experiment, original and normalized distance from Kinect, and the seven features of the upper body part. These features ranked 1st, 2nd, 4th, and 8th on 22 feature sets, with accuracies 99.5%, 99.4%, 97.8%, and 94.5%, respectively. In addition, random forest is the best performing classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guozizi发布了新的文献求助10
1秒前
Orange应助yeezy123采纳,获得10
2秒前
鳗鱼饭完成签到,获得积分10
2秒前
余悸完成签到 ,获得积分10
2秒前
2568269431完成签到 ,获得积分10
2秒前
打打应助微笑傲白采纳,获得10
3秒前
simon完成签到,获得积分10
3秒前
1111完成签到,获得积分10
3秒前
章半仙完成签到,获得积分10
3秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
无极微光应助科研通管家采纳,获得30
5秒前
鲸落星海应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得30
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
linzhb6应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
linzhb6应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小灰灰应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337