亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive evaluation of skeleton features-based fall detection from Microsoft Kinect v2

计算机科学 人工智能 计算机视觉 骨架(计算机编程)
作者
Mona Saleh Alzahrani,Salma Kammoun Jarraya,Hanêne Ben-Abdallah,Manar Salamah Ali
出处
期刊:Signal, Image and Video Processing [Springer Nature]
卷期号:13 (7): 1431-1439 被引量:6
标识
DOI:10.1007/s11760-019-01490-9
摘要

Most of the computer vision applications for human activity recognition exploit the fact that body features calculated from a 3D skeleton increase robustness across persons and can lead to higher performance. However, their success in activity recognition, including falls, depends on the correspondence between the human activities and the used joint/part features. To provide for this correspondence, we experimentally evaluate in this paper skeleton features-based fall detection by comparing fall detection performance for different combinations of skeleton features used in previous related works. We determine the skeleton features that best distinguish fall from non-fall frames, and the best performing classifier. In this endeavor, we followed the classical five steps of supervised machine learning: (1) we collected a learning data composed of 42 fall and 37 non-fall videos from FallFree; (2) we extracted and (3) preprocessed the skeleton data of the training set; (4) we extracted each possible skeleton feature; finally (5) we evaluated all extracted and selected features using two main experiments; one of them based on neighborhood component analysis (NCA). In this evaluation, we show that fall detection based on skeleton features has very encouraging accuracy that varies depending on the used features. More specifically, we recommend the following features: 12 features that resulted from NCA experiment, original and normalized distance from Kinect, and the seven features of the upper body part. These features ranked 1st, 2nd, 4th, and 8th on 22 feature sets, with accuracies 99.5%, 99.4%, 97.8%, and 94.5%, respectively. In addition, random forest is the best performing classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
17秒前
17秒前
暴躁的奇异果完成签到,获得积分10
21秒前
22秒前
领导范儿应助Ming采纳,获得10
32秒前
44秒前
48秒前
CodeCraft应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
George发布了新的文献求助10
1分钟前
1分钟前
Ming发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Enso完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
阿里给阿里的求助进行了留言
3分钟前
小透明发布了新的文献求助10
3分钟前
3分钟前
SUNny发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
4分钟前
等待安莲完成签到,获得积分10
4分钟前
完美世界应助等待安莲采纳,获得10
5分钟前
5分钟前
阿里完成签到,获得积分10
5分钟前
5分钟前
CC完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664480
求助须知:如何正确求助?哪些是违规求助? 4862708
关于积分的说明 15107835
捐赠科研通 4823085
什么是DOI,文献DOI怎么找? 2581925
邀请新用户注册赠送积分活动 1536045
关于科研通互助平台的介绍 1494449