Comprehensive evaluation of skeleton features-based fall detection from Microsoft Kinect v2

计算机科学 人工智能 计算机视觉 骨架(计算机编程)
作者
Mona Saleh Alzahrani,Salma Kammoun Jarraya,Hanêne Ben-Abdallah,Manar Salamah Ali
出处
期刊:Signal, Image and Video Processing [Springer Science+Business Media]
卷期号:13 (7): 1431-1439 被引量:6
标识
DOI:10.1007/s11760-019-01490-9
摘要

Most of the computer vision applications for human activity recognition exploit the fact that body features calculated from a 3D skeleton increase robustness across persons and can lead to higher performance. However, their success in activity recognition, including falls, depends on the correspondence between the human activities and the used joint/part features. To provide for this correspondence, we experimentally evaluate in this paper skeleton features-based fall detection by comparing fall detection performance for different combinations of skeleton features used in previous related works. We determine the skeleton features that best distinguish fall from non-fall frames, and the best performing classifier. In this endeavor, we followed the classical five steps of supervised machine learning: (1) we collected a learning data composed of 42 fall and 37 non-fall videos from FallFree; (2) we extracted and (3) preprocessed the skeleton data of the training set; (4) we extracted each possible skeleton feature; finally (5) we evaluated all extracted and selected features using two main experiments; one of them based on neighborhood component analysis (NCA). In this evaluation, we show that fall detection based on skeleton features has very encouraging accuracy that varies depending on the used features. More specifically, we recommend the following features: 12 features that resulted from NCA experiment, original and normalized distance from Kinect, and the seven features of the upper body part. These features ranked 1st, 2nd, 4th, and 8th on 22 feature sets, with accuracies 99.5%, 99.4%, 97.8%, and 94.5%, respectively. In addition, random forest is the best performing classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
372925abc完成签到,获得积分10
1秒前
liuzhou完成签到,获得积分20
2秒前
科研通AI2S应助张琳琳采纳,获得10
2秒前
2秒前
冷月fan完成签到,获得积分10
3秒前
3秒前
荷包蛋完成签到,获得积分10
3秒前
4秒前
4秒前
墨尔本的翡翠完成签到 ,获得积分20
5秒前
666完成签到 ,获得积分10
5秒前
haonanchen完成签到,获得积分10
5秒前
date316发布了新的文献求助10
5秒前
小小鹿发布了新的文献求助10
6秒前
justonce发布了新的文献求助10
6秒前
YT完成签到,获得积分10
6秒前
揽星完成签到,获得积分10
7秒前
Yuee发布了新的文献求助10
7秒前
春风依旧发布了新的文献求助10
8秒前
颉颉发布了新的文献求助10
8秒前
华东小可爱完成签到,获得积分10
9秒前
阿苏完成签到 ,获得积分10
9秒前
9秒前
zhengzhao完成签到,获得积分10
10秒前
我是老大应助su采纳,获得10
10秒前
你去打输出完成签到,获得积分10
10秒前
XZZ完成签到 ,获得积分10
10秒前
深海鱼完成签到,获得积分10
10秒前
废羊羊完成签到 ,获得积分10
11秒前
Cbbaby完成签到,获得积分10
11秒前
赘婿应助甝虪采纳,获得10
12秒前
小圈圈梦魇完成签到,获得积分10
12秒前
Accept应助zhuww采纳,获得20
12秒前
晓晖完成签到,获得积分10
12秒前
zzer完成签到,获得积分10
13秒前
香飘飘完成签到,获得积分10
13秒前
13秒前
专注大门完成签到,获得积分10
13秒前
芳芳完成签到,获得积分10
13秒前
英姑应助小星采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044