Speech emotion recognition using deep 1D & 2D CNN LSTM networks

计算机科学 联营 卷积神经网络 人工智能 水准点(测量) 深度学习 特征(语言学) 图层(电子) 语音识别 光谱图 网络体系结构 深信不疑网络 模式识别(心理学) 循环神经网络 人工神经网络 哲学 有机化学 化学 语言学 地理 计算机安全 大地测量学
作者
Jianfeng Zhao,Xia Mao,Lijiang Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:47: 312-323 被引量:734
标识
DOI:10.1016/j.bspc.2018.08.035
摘要

We aimed at learning deep emotion features to recognize speech emotion. Two convolutional neural network and long short-term memory (CNN LSTM) networks, one 1D CNN LSTM network and one 2D CNN LSTM network, were constructed to learn local and global emotion-related features from speech and log-mel spectrogram respectively. The two networks have the similar architecture, both consisting of four local feature learning blocks (LFLBs) and one long short-term memory (LSTM) layer. LFLB, which mainly contains one convolutional layer and one max-pooling layer, is built for learning local correlations along with extracting hierarchical correlations. LSTM layer is adopted to learn long-term dependencies from the learned local features. The designed networks, combinations of the convolutional neural network (CNN) and LSTM, can take advantage of the strengths of both networks and overcome the shortcomings of them, and are evaluated on two benchmark databases. The experimental results show that the designed networks achieve excellent performance on the task of recognizing speech emotion, especially the 2D CNN LSTM network outperforms the traditional approaches, Deep Belief Network (DBN) and CNN on the selected databases. The 2D CNN LSTM network achieves recognition accuracies of 95.33% and 95.89% on Berlin EmoDB of speaker-dependent and speaker-independent experiments respectively, which compare favourably to the accuracy of 91.6% and 92.9% obtained by traditional approaches; and also yields recognition accuracies of 89.16% and 52.14% on IEMOCAP database of speaker-dependent and speaker-independent experiments, which are much higher than the accuracy of 73.78% and 40.02% obtained by DBN and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMBB发布了新的文献求助10
3秒前
tk完成签到 ,获得积分10
3秒前
3秒前
李白发布了新的文献求助10
3秒前
gdh发布了新的文献求助10
3秒前
西贝子子完成签到,获得积分20
4秒前
5秒前
6秒前
珊熙完成签到,获得积分20
7秒前
chin发布了新的文献求助10
10秒前
ZY发布了新的文献求助10
11秒前
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
踏实天空应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
你好啊发布了新的文献求助10
17秒前
沐熙完成签到,获得积分10
17秒前
丘比特应助gdh采纳,获得10
19秒前
Majician完成签到,获得积分10
21秒前
21秒前
Akim应助失重心跳采纳,获得10
22秒前
NexusExplorer应助surain采纳,获得30
22秒前
拼搏的宇完成签到 ,获得积分10
23秒前
科目三应助啊啊啊lei采纳,获得10
23秒前
万能图书馆应助小武wwwww采纳,获得10
23秒前
24秒前
马马马发布了新的文献求助10
25秒前
bkagyin应助你好啊采纳,获得10
25秒前
在水一方应助huco采纳,获得10
27秒前
27秒前
慕青应助顾文强采纳,获得10
27秒前
28秒前
28秒前
30秒前
析界成微完成签到,获得积分10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043