Speech emotion recognition using deep 1D & 2D CNN LSTM networks

计算机科学 联营 卷积神经网络 人工智能 水准点(测量) 深度学习 特征(语言学) 图层(电子) 语音识别 光谱图 网络体系结构 深信不疑网络 模式识别(心理学) 循环神经网络 人工神经网络 哲学 有机化学 化学 语言学 地理 计算机安全 大地测量学
作者
Jianfeng Zhao,Xia Mao,Lijiang Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:47: 312-323 被引量:734
标识
DOI:10.1016/j.bspc.2018.08.035
摘要

We aimed at learning deep emotion features to recognize speech emotion. Two convolutional neural network and long short-term memory (CNN LSTM) networks, one 1D CNN LSTM network and one 2D CNN LSTM network, were constructed to learn local and global emotion-related features from speech and log-mel spectrogram respectively. The two networks have the similar architecture, both consisting of four local feature learning blocks (LFLBs) and one long short-term memory (LSTM) layer. LFLB, which mainly contains one convolutional layer and one max-pooling layer, is built for learning local correlations along with extracting hierarchical correlations. LSTM layer is adopted to learn long-term dependencies from the learned local features. The designed networks, combinations of the convolutional neural network (CNN) and LSTM, can take advantage of the strengths of both networks and overcome the shortcomings of them, and are evaluated on two benchmark databases. The experimental results show that the designed networks achieve excellent performance on the task of recognizing speech emotion, especially the 2D CNN LSTM network outperforms the traditional approaches, Deep Belief Network (DBN) and CNN on the selected databases. The 2D CNN LSTM network achieves recognition accuracies of 95.33% and 95.89% on Berlin EmoDB of speaker-dependent and speaker-independent experiments respectively, which compare favourably to the accuracy of 91.6% and 92.9% obtained by traditional approaches; and also yields recognition accuracies of 89.16% and 52.14% on IEMOCAP database of speaker-dependent and speaker-independent experiments, which are much higher than the accuracy of 73.78% and 40.02% obtained by DBN and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
逐风给逐风的求助进行了留言
4秒前
科研通AI5应助灌饼采纳,获得30
4秒前
Owen应助Zzzzzzzzzzz采纳,获得10
5秒前
6秒前
7秒前
巫马秋寒应助笑点低可乐采纳,获得10
7秒前
xuex1完成签到,获得积分10
7秒前
情怀应助阳光的雁山采纳,获得10
9秒前
斯文败类应助jy采纳,获得10
9秒前
9秒前
日月轮回发布了新的文献求助10
10秒前
36456657应助木香采纳,获得10
11秒前
无花果应助ns采纳,获得30
11秒前
刘铭晨完成签到,获得积分10
11秒前
12秒前
YY发布了新的文献求助10
12秒前
Rrr发布了新的文献求助10
13秒前
学术蠕虫发布了新的文献求助10
13秒前
13秒前
miumiuka完成签到,获得积分10
14秒前
个性的薯片应助lyt采纳,获得20
16秒前
sweetbearm应助寒涛先生采纳,获得10
17秒前
wanci应助YY采纳,获得10
18秒前
18秒前
19秒前
19秒前
20秒前
HC完成签到 ,获得积分10
21秒前
姚姚的赵赵完成签到,获得积分10
21秒前
JamesPei应助大豪子采纳,获得30
22秒前
jy发布了新的文献求助10
22秒前
22秒前
陆靖易发布了新的文献求助10
22秒前
LQW完成签到,获得积分20
23秒前
24秒前
plant完成签到,获得积分10
24秒前
lyt完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808