Speech emotion recognition using deep 1D & 2D CNN LSTM networks

计算机科学 联营 卷积神经网络 人工智能 水准点(测量) 深度学习 特征(语言学) 图层(电子) 语音识别 光谱图 网络体系结构 深信不疑网络 模式识别(心理学) 循环神经网络 人工神经网络 哲学 有机化学 化学 语言学 地理 计算机安全 大地测量学
作者
Jianfeng Zhao,Xia Mao,Lijiang Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:47: 312-323 被引量:829
标识
DOI:10.1016/j.bspc.2018.08.035
摘要

We aimed at learning deep emotion features to recognize speech emotion. Two convolutional neural network and long short-term memory (CNN LSTM) networks, one 1D CNN LSTM network and one 2D CNN LSTM network, were constructed to learn local and global emotion-related features from speech and log-mel spectrogram respectively. The two networks have the similar architecture, both consisting of four local feature learning blocks (LFLBs) and one long short-term memory (LSTM) layer. LFLB, which mainly contains one convolutional layer and one max-pooling layer, is built for learning local correlations along with extracting hierarchical correlations. LSTM layer is adopted to learn long-term dependencies from the learned local features. The designed networks, combinations of the convolutional neural network (CNN) and LSTM, can take advantage of the strengths of both networks and overcome the shortcomings of them, and are evaluated on two benchmark databases. The experimental results show that the designed networks achieve excellent performance on the task of recognizing speech emotion, especially the 2D CNN LSTM network outperforms the traditional approaches, Deep Belief Network (DBN) and CNN on the selected databases. The 2D CNN LSTM network achieves recognition accuracies of 95.33% and 95.89% on Berlin EmoDB of speaker-dependent and speaker-independent experiments respectively, which compare favourably to the accuracy of 91.6% and 92.9% obtained by traditional approaches; and also yields recognition accuracies of 89.16% and 52.14% on IEMOCAP database of speaker-dependent and speaker-independent experiments, which are much higher than the accuracy of 73.78% and 40.02% obtained by DBN and CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
刚刚
星辰大海应助蜗牛采纳,获得10
刚刚
刚刚
1秒前
2秒前
2秒前
CodeCraft应助super采纳,获得10
2秒前
2秒前
喜羊羊和村长做朋友完成签到,获得积分10
2秒前
zjh完成签到,获得积分10
2秒前
kiwiii完成签到,获得积分10
3秒前
3秒前
ding应助zc采纳,获得10
3秒前
Faye完成签到,获得积分10
3秒前
兴胜发布了新的文献求助30
4秒前
CodeCraft应助ycd采纳,获得10
4秒前
5秒前
5秒前
blackddl应助健壮的悟空采纳,获得10
5秒前
6秒前
6秒前
6秒前
Archer完成签到,获得积分10
7秒前
7秒前
yxtx发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
qiuli完成签到,获得积分10
7秒前
甜甜圈发布了新的文献求助10
8秒前
8秒前
tangshijun完成签到,获得积分10
9秒前
璇子发布了新的文献求助10
9秒前
XIHaun完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
orixero应助呼啦啦采纳,获得10
11秒前
英吉利25发布了新的文献求助30
11秒前
权寻梅完成签到,获得积分10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581495
求助须知:如何正确求助?哪些是违规求助? 4665821
关于积分的说明 14758879
捐赠科研通 4607710
什么是DOI,文献DOI怎么找? 2528346
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466507