Speech emotion recognition using deep 1D & 2D CNN LSTM networks

计算机科学 联营 卷积神经网络 人工智能 水准点(测量) 深度学习 特征(语言学) 图层(电子) 语音识别 光谱图 网络体系结构 深信不疑网络 模式识别(心理学) 循环神经网络 人工神经网络 哲学 有机化学 化学 语言学 地理 计算机安全 大地测量学
作者
Jianfeng Zhao,Xia Mao,Lijiang Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:47: 312-323 被引量:829
标识
DOI:10.1016/j.bspc.2018.08.035
摘要

We aimed at learning deep emotion features to recognize speech emotion. Two convolutional neural network and long short-term memory (CNN LSTM) networks, one 1D CNN LSTM network and one 2D CNN LSTM network, were constructed to learn local and global emotion-related features from speech and log-mel spectrogram respectively. The two networks have the similar architecture, both consisting of four local feature learning blocks (LFLBs) and one long short-term memory (LSTM) layer. LFLB, which mainly contains one convolutional layer and one max-pooling layer, is built for learning local correlations along with extracting hierarchical correlations. LSTM layer is adopted to learn long-term dependencies from the learned local features. The designed networks, combinations of the convolutional neural network (CNN) and LSTM, can take advantage of the strengths of both networks and overcome the shortcomings of them, and are evaluated on two benchmark databases. The experimental results show that the designed networks achieve excellent performance on the task of recognizing speech emotion, especially the 2D CNN LSTM network outperforms the traditional approaches, Deep Belief Network (DBN) and CNN on the selected databases. The 2D CNN LSTM network achieves recognition accuracies of 95.33% and 95.89% on Berlin EmoDB of speaker-dependent and speaker-independent experiments respectively, which compare favourably to the accuracy of 91.6% and 92.9% obtained by traditional approaches; and also yields recognition accuracies of 89.16% and 52.14% on IEMOCAP database of speaker-dependent and speaker-independent experiments, which are much higher than the accuracy of 73.78% and 40.02% obtained by DBN and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英俊的铭应助yujia采纳,获得10
1秒前
Lsmile完成签到 ,获得积分10
2秒前
Akim应助饭后瞌睡采纳,获得10
2秒前
Pluto发布了新的文献求助10
2秒前
万能图书馆应助陈云凤采纳,获得10
3秒前
Cell完成签到 ,获得积分10
4秒前
学生白完成签到,获得积分10
4秒前
嘴嘴完成签到,获得积分10
4秒前
zzf完成签到,获得积分10
5秒前
uu发布了新的文献求助10
5秒前
5秒前
学海无涯发布了新的文献求助10
5秒前
丁二完成签到,获得积分10
6秒前
研友_nPPzon完成签到,获得积分10
6秒前
6秒前
7秒前
hsd完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
wym完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI5应助sxx采纳,获得10
10秒前
小鱼快游发布了新的文献求助10
10秒前
11秒前
11秒前
xixixii发布了新的文献求助10
12秒前
Artemis完成签到,获得积分10
12秒前
snowpie完成签到 ,获得积分10
12秒前
科研通AI5应助ganerwahaha采纳,获得10
12秒前
天色青青发布了新的文献求助10
12秒前
stride21发布了新的文献求助10
12秒前
12秒前
饭后瞌睡发布了新的文献求助10
13秒前
110o发布了新的文献求助10
13秒前
13秒前
栗子完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Handbook of Organizational Communication: An Interdisciplinary Perspective 400
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558727
求助须知:如何正确求助?哪些是违规求助? 3985597
关于积分的说明 12339453
捐赠科研通 3656084
什么是DOI,文献DOI怎么找? 2014170
邀请新用户注册赠送积分活动 1048980
科研通“疑难数据库(出版商)”最低求助积分说明 937375