Speech emotion recognition using deep 1D & 2D CNN LSTM networks

计算机科学 联营 卷积神经网络 人工智能 水准点(测量) 深度学习 特征(语言学) 图层(电子) 语音识别 光谱图 网络体系结构 深信不疑网络 模式识别(心理学) 循环神经网络 人工神经网络 哲学 有机化学 化学 语言学 地理 计算机安全 大地测量学
作者
Jianfeng Zhao,Xia Mao,Lijiang Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:47: 312-323 被引量:829
标识
DOI:10.1016/j.bspc.2018.08.035
摘要

We aimed at learning deep emotion features to recognize speech emotion. Two convolutional neural network and long short-term memory (CNN LSTM) networks, one 1D CNN LSTM network and one 2D CNN LSTM network, were constructed to learn local and global emotion-related features from speech and log-mel spectrogram respectively. The two networks have the similar architecture, both consisting of four local feature learning blocks (LFLBs) and one long short-term memory (LSTM) layer. LFLB, which mainly contains one convolutional layer and one max-pooling layer, is built for learning local correlations along with extracting hierarchical correlations. LSTM layer is adopted to learn long-term dependencies from the learned local features. The designed networks, combinations of the convolutional neural network (CNN) and LSTM, can take advantage of the strengths of both networks and overcome the shortcomings of them, and are evaluated on two benchmark databases. The experimental results show that the designed networks achieve excellent performance on the task of recognizing speech emotion, especially the 2D CNN LSTM network outperforms the traditional approaches, Deep Belief Network (DBN) and CNN on the selected databases. The 2D CNN LSTM network achieves recognition accuracies of 95.33% and 95.89% on Berlin EmoDB of speaker-dependent and speaker-independent experiments respectively, which compare favourably to the accuracy of 91.6% and 92.9% obtained by traditional approaches; and also yields recognition accuracies of 89.16% and 52.14% on IEMOCAP database of speaker-dependent and speaker-independent experiments, which are much higher than the accuracy of 73.78% and 40.02% obtained by DBN and CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡导家的菜狗完成签到 ,获得积分10
刚刚
华仔应助李杰采纳,获得10
1秒前
桐桐应助Evander采纳,获得10
2秒前
胡亚楠完成签到,获得积分10
2秒前
ysy完成签到,获得积分10
3秒前
JamesPei应助哈哈哈采纳,获得10
4秒前
ZRR发布了新的文献求助10
5秒前
Cy-coolorgan发布了新的文献求助10
5秒前
充电宝应助刻苦念桃采纳,获得10
5秒前
bkagyin应助哈哈采纳,获得10
7秒前
7秒前
赵俊博完成签到,获得积分20
8秒前
爆米花应助昏睡的朝雪采纳,获得10
9秒前
ysy完成签到,获得积分10
9秒前
孤独的凤完成签到,获得积分10
9秒前
Evander完成签到,获得积分10
9秒前
小熊猫完成签到,获得积分10
10秒前
浮游应助77采纳,获得10
11秒前
科研通AI6应助77采纳,获得10
11秒前
12秒前
bkagyin应助zaphkiel采纳,获得10
13秒前
Cy-coolorgan完成签到,获得积分10
13秒前
ZRR完成签到,获得积分10
13秒前
JamesPei应助苦学僧采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
Qwe完成签到,获得积分10
16秒前
engine完成签到,获得积分10
17秒前
yy完成签到,获得积分10
20秒前
英俊的铭应助liusha采纳,获得10
22秒前
科目三应助柔弱的苗条采纳,获得10
24秒前
科研通AI6应助自觉绿草采纳,获得10
24秒前
muqi完成签到,获得积分10
24秒前
小于完成签到,获得积分10
25秒前
25秒前
星辰大海应助机智灯泡采纳,获得10
26秒前
27秒前
哈哈哈发布了新的文献求助10
31秒前
猫蒲发布了新的文献求助10
33秒前
科研通AI6应助yier采纳,获得10
33秒前
小杨完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073