Speech emotion recognition using deep 1D & 2D CNN LSTM networks

计算机科学 联营 卷积神经网络 人工智能 水准点(测量) 深度学习 特征(语言学) 图层(电子) 语音识别 光谱图 网络体系结构 深信不疑网络 模式识别(心理学) 循环神经网络 人工神经网络 哲学 有机化学 化学 语言学 地理 计算机安全 大地测量学
作者
Jianfeng Zhao,Xia Mao,Lijiang Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:47: 312-323 被引量:829
标识
DOI:10.1016/j.bspc.2018.08.035
摘要

We aimed at learning deep emotion features to recognize speech emotion. Two convolutional neural network and long short-term memory (CNN LSTM) networks, one 1D CNN LSTM network and one 2D CNN LSTM network, were constructed to learn local and global emotion-related features from speech and log-mel spectrogram respectively. The two networks have the similar architecture, both consisting of four local feature learning blocks (LFLBs) and one long short-term memory (LSTM) layer. LFLB, which mainly contains one convolutional layer and one max-pooling layer, is built for learning local correlations along with extracting hierarchical correlations. LSTM layer is adopted to learn long-term dependencies from the learned local features. The designed networks, combinations of the convolutional neural network (CNN) and LSTM, can take advantage of the strengths of both networks and overcome the shortcomings of them, and are evaluated on two benchmark databases. The experimental results show that the designed networks achieve excellent performance on the task of recognizing speech emotion, especially the 2D CNN LSTM network outperforms the traditional approaches, Deep Belief Network (DBN) and CNN on the selected databases. The 2D CNN LSTM network achieves recognition accuracies of 95.33% and 95.89% on Berlin EmoDB of speaker-dependent and speaker-independent experiments respectively, which compare favourably to the accuracy of 91.6% and 92.9% obtained by traditional approaches; and also yields recognition accuracies of 89.16% and 52.14% on IEMOCAP database of speaker-dependent and speaker-independent experiments, which are much higher than the accuracy of 73.78% and 40.02% obtained by DBN and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笨笨师发布了新的文献求助10
1秒前
3秒前
4秒前
安娜驳回了张雷应助
5秒前
完美的冷荷完成签到,获得积分10
7秒前
7秒前
8秒前
Leeny发布了新的文献求助10
10秒前
善学以致用应助XLL小绿绿采纳,获得10
10秒前
11秒前
11秒前
笑点低的碧琴完成签到,获得积分10
13秒前
14秒前
15秒前
西北完成签到,获得积分10
16秒前
小送完成签到,获得积分10
16秒前
17秒前
星光完成签到,获得积分10
18秒前
英吉利25发布了新的文献求助30
20秒前
哈哈哈发布了新的文献求助10
20秒前
顺利的毛衣完成签到,获得积分10
21秒前
22秒前
SYLH应助zz采纳,获得30
23秒前
冬不拉的红糖纸完成签到,获得积分20
23秒前
25秒前
木头完成签到 ,获得积分10
25秒前
哈哈哈完成签到,获得积分10
28秒前
小达人完成签到 ,获得积分10
29秒前
佳佳完成签到,获得积分10
29秒前
ZL完成签到 ,获得积分10
29秒前
30秒前
31秒前
罗rr完成签到 ,获得积分10
32秒前
缓慢的可乐完成签到,获得积分10
37秒前
37秒前
39秒前
笨笨师完成签到,获得积分20
39秒前
XXXX发布了新的文献求助10
40秒前
Owen应助瓦解99采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388