亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot Deep Adversarial Learning for Video-Based Person Re-Identification

判别式 人工智能 计算机科学 不变(物理) 渲染(计算机图形) 计算机视觉 对抗制 匹配(统计) 水准点(测量) 深度学习 特征学习 模式识别(心理学) 机器学习 数学 数学物理 统计 地理 大地测量学
作者
Lin Wu,Yang Wang,Hongzhi Yin,Meng Wang,Ling Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1233-1245 被引量:55
标识
DOI:10.1109/tip.2019.2940684
摘要

Video-based person re-identification (re-ID) refers to matching people across camera views from arbitrary unaligned video footages. Existing methods rely on supervision signals to optimise a projected space under which the distances between inter/intra-videos are maximised/minimised. However, this demands exhaustively labelling people across camera views, rendering them unable to be scaled in large networked cameras. Also, it is noticed that learning effective video representations with view invariance is not explicitly addressed for which features exhibit different distributions otherwise. Thus, matching videos for person re-ID demands flexible models to capture the dynamics in time-series observations and learn view-invariant representations with access to limited labeled training samples. In this paper, we propose a novel few-shot deep learning approach to video-based person re-ID, to learn comparable representations that are discriminative and view-invariant. The proposed method is developed on the variational recurrent neural networks (VRNNs) and trained adversarially to produce latent variables with temporal dependencies that are highly discriminative yet view-invariant in matching persons. Through extensive experiments conducted on three benchmark datasets, we empirically show the capability of our method in creating view-invariant temporal features and state-of-the-art performance achieved by our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Aurora采纳,获得10
8秒前
nicolaslcq完成签到,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
43秒前
Aurora发布了新的文献求助10
48秒前
49秒前
木子李发布了新的文献求助30
54秒前
充电宝应助mmyhn采纳,获得10
54秒前
1分钟前
木子李完成签到,获得积分10
1分钟前
科研通AI2S应助Aurora采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
1分钟前
慕青应助mmyhn采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
mmyhn发布了新的文献求助10
1分钟前
2分钟前
2分钟前
野菜生活发布了新的文献求助10
2分钟前
Aurora发布了新的文献求助10
2分钟前
合适的金鑫完成签到,获得积分10
2分钟前
orixero应助野菜生活采纳,获得10
2分钟前
叶潭完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
fansuerte应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
汉堡包应助mmyhn采纳,获得10
3分钟前
瓜瓜完成签到,获得积分10
3分钟前
3分钟前
mmyhn发布了新的文献求助10
3分钟前
科研通AI5应助瓜瓜采纳,获得30
3分钟前
打打应助Rin采纳,获得10
4分钟前
时尚的蜡烛完成签到,获得积分10
4分钟前
fansuerte应助科研通管家采纳,获得10
4分钟前
fansuerte应助科研通管家采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228143
关于积分的说明 9778564
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991