An intelligent hybridization of ARIMA with machine learning models for time series forecasting

自回归积分移动平均 非线性系统 计算机科学 感知器 时间序列 支持向量机 混合动力系统 系列(地层学) 线性模型 功能(生物学) 人工智能 机器学习 算法 人工神经网络 物理 量子力学 进化生物学 古生物学 生物
作者
Domingos S. de O. Santos Júnior,João Fausto Lorenzato de Oliveira,Paulo S. G. de Mattos Neto
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:175: 72-86 被引量:141
标识
DOI:10.1016/j.knosys.2019.03.011
摘要

The development of accurate forecasting systems can be challenging in real-world applications. The modeling of real-world time series is a particularly difficult task because they are generally composed of linear and nonlinear patterns that are combined in some form. Several hybrid systems that combine linear and nonlinear techniques have obtained relevant results in terms of accuracy in comparison with single models. However, the best combination function of the forecasting of the linear and nonlinear patterns is unknown, which makes this modeling an open question. This work proposes a hybrid system that searches for a suitable function to combine the forecasts of linear and nonlinear models. Thus, the proposed system performs: (i) linear modeling of the time series; (ii) nonlinear modeling of the error series; and (iii) a data-driven combination that searches for: (iii.a) the most suitable function, between linear and nonlinear formalisms, and (iii.b) the number of forecasts of models (i) and (ii) that maximizes the performance of the combination. Two versions of the hybrid system are evaluated. In both versions, the ARIMA model is used in step (i) and two nonlinear intelligent models – Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR) – are used in steps (ii) and (iii), alternately. Experimental simulations with six real-world complex time series that are well-known in the literature are evaluated using a set of popular performance metrics. Our results show that the proposed hybrid system attains superior performance when compared with single and hybrid models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edward完成签到,获得积分10
1秒前
Orange应助拾意采纳,获得10
1秒前
icreat完成签到,获得积分10
1秒前
妮妮发布了新的文献求助10
3秒前
闪闪白亦完成签到 ,获得积分10
3秒前
Iridesent0v0发布了新的文献求助10
3秒前
渠安发布了新的文献求助30
5秒前
科研通AI2S应助木习习采纳,获得10
5秒前
闪闪白亦关注了科研通微信公众号
7秒前
7秒前
7秒前
Iridesent0v0完成签到,获得积分10
9秒前
gogogo完成签到,获得积分10
10秒前
10秒前
活力的尔阳完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
木习习完成签到,获得积分10
12秒前
bkagyin应助亦玉采纳,获得10
12秒前
12秒前
12秒前
爱吃肉肉的手性分子完成签到,获得积分10
13秒前
14秒前
拾意发布了新的文献求助10
15秒前
岁岁完成签到 ,获得积分10
16秒前
belly发布了新的文献求助10
16秒前
木习习发布了新的文献求助10
17秒前
17秒前
17秒前
Su发布了新的文献求助10
17秒前
可靠板栗完成签到,获得积分10
18秒前
kjc完成签到 ,获得积分10
18秒前
19秒前
地球为何自转完成签到,获得积分10
21秒前
搜集达人应助坚强的严青采纳,获得10
21秒前
21秒前
21秒前
fff1完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474