An intelligent hybridization of ARIMA with machine learning models for time series forecasting

自回归积分移动平均 非线性系统 计算机科学 感知器 时间序列 支持向量机 混合动力系统 系列(地层学) 线性模型 功能(生物学) 人工智能 机器学习 算法 人工神经网络 进化生物学 生物 物理 量子力学 古生物学
作者
Domingos S. de O. Santos Júnior,João Fausto Lorenzato de Oliveira,Paulo S. G. de Mattos Neto
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:175: 72-86 被引量:141
标识
DOI:10.1016/j.knosys.2019.03.011
摘要

The development of accurate forecasting systems can be challenging in real-world applications. The modeling of real-world time series is a particularly difficult task because they are generally composed of linear and nonlinear patterns that are combined in some form. Several hybrid systems that combine linear and nonlinear techniques have obtained relevant results in terms of accuracy in comparison with single models. However, the best combination function of the forecasting of the linear and nonlinear patterns is unknown, which makes this modeling an open question. This work proposes a hybrid system that searches for a suitable function to combine the forecasts of linear and nonlinear models. Thus, the proposed system performs: (i) linear modeling of the time series; (ii) nonlinear modeling of the error series; and (iii) a data-driven combination that searches for: (iii.a) the most suitable function, between linear and nonlinear formalisms, and (iii.b) the number of forecasts of models (i) and (ii) that maximizes the performance of the combination. Two versions of the hybrid system are evaluated. In both versions, the ARIMA model is used in step (i) and two nonlinear intelligent models – Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR) – are used in steps (ii) and (iii), alternately. Experimental simulations with six real-world complex time series that are well-known in the literature are evaluated using a set of popular performance metrics. Our results show that the proposed hybrid system attains superior performance when compared with single and hybrid models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无忧完成签到,获得积分20
刚刚
左眼天堂发布了新的文献求助10
刚刚
小蘑菇应助SMLW采纳,获得10
1秒前
牛牛牛应助LLLLL采纳,获得10
1秒前
1秒前
drdouxia发布了新的文献求助10
1秒前
星辰大海应助Yuri采纳,获得10
2秒前
3秒前
CR7应助TheSilencer采纳,获得20
3秒前
3秒前
4秒前
无忧发布了新的文献求助30
4秒前
4秒前
5秒前
Rondab应助Zzjinyu采纳,获得10
5秒前
xmf发布了新的文献求助10
6秒前
CodeCraft应助努力的欢欢采纳,获得10
6秒前
6秒前
叫我小周吧完成签到,获得积分20
7秒前
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
xzn1123应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
xzn1123应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
Zxx应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得30
9秒前
dong应助科研通管家采纳,获得10
9秒前
10秒前
李爱国应助xmf采纳,获得10
10秒前
小宇哥LB完成签到 ,获得积分10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
shao应助科研通管家采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794