钙钛矿(结构)
光伏
材料科学
光伏系统
纳米技术
能量转换效率
光电子学
电气工程
化学工程
工程类
作者
Giulia Grancini,Mohammad Khaja Nazeeruddin
标识
DOI:10.1038/s41578-018-0065-0
摘要
Hybrid perovskites are currently one of the most active fields of research owing to their enormous potential for photovoltaics. The performance of 3D hybrid organic–inorganic perovskite solar cells has increased at an incredible rate, reaching power conversion efficiencies comparable to those of many established technologies. However, the commercial application of 3D hybrid perovskites is inhibited by their poor stability. Relative to 3D hybrid perovskites, low-dimensional — that is, 2D — hybrid perovskites have demonstrated higher moisture stability, offering new approaches to stabilizing perovskite-based photovoltaic devices. Furthermore, 2D hybrid perovskites have versatile structures, enabling the fine-tuning of their optoelectronic properties through compositional engineering. In this Review, we discuss the state of the art in 2D perovskites, providing an overview of structural and materials engineering aspects and optical and photophysical properties. Moreover, we discuss recent developments along with the main limitations of 3D perovskites and assess the advantages of 2D perovskites over their 3D parent structures in terms of stability. Finally, we review recent achievements in combining 3D and 2D perovskites as an approach to simultaneously boost device efficiency and stability, paving the way for mixed-dimensional perovskite solar cells for commercial applications. Combining low-dimensional and 3D perovskites is a promising approach to achieve stable and efficient solar cells. In this Review, we discuss the structural, optical and photophysical properties of low-dimensional perovskites, compare the stability and efficiency of 2D and 3D perovskite devices, and consider 2D/3D composites as a strategy to increase the stability of perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI