Selection of Informative Spectral Bands for PLS Models to Estimate Foliar Chlorophyll Content Using Hyperspectral Reflectance

高光谱成像 偏最小二乘回归 遥感 光谱带 选择(遗传算法) 航程(航空) 回归 内容(测量理论) 反射率 均方误差 光谱分辨率 近红外光谱 回归分析 逐步回归 叶绿素 计算机科学 模式识别(心理学) 数学 人工智能 谱线 统计 植物 材料科学 生物 光学 地理 物理 数学分析 天文 复合材料
作者
Jia Jin,Quan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (5): 3064-3072 被引量:31
标识
DOI:10.1109/tgrs.2018.2880193
摘要

Partial least-squares (PLS) regression is a popular method for modeling chemical constituents from spectroscopic data and has been widely applied to retrieve leaf chemical components via hyperspectral remote sensing. However, one persistent challenge for applying the PLS regression is the selection of informative spectral bands among the vast array of acquired spectra. No consensus has been reached yet on how to select informative bands regardless of many techniques being proposed. In this paper, we have composited four individual data sets containing a total of 598 leaf samples from various species to evaluate four different band elimination/selection methods. Results revealed that the stepwise-PLS approach was optimal to estimate leaf chlorophyll content even under different spectral resolutions, from which informative bands were identified. Informative bands, in general, include bands inside the near-infrared (NIR), and in addition, one within the blue range and one within the red range. With such combinations, the PLS regression models meet the requirement for accurate leaf chlorophyll estimation. For most PLS regression models, their accuracies decreased with the reduction of spectral resolution, but the stepwise-PLS approach could consistently estimate the chlorophyll content at different spectral resolutions (with R2 ≥ 0.77 for resolutions <; 20 nm). The findings, hence, provide valuable insights for selecting informative spectral bands for PLS analysis and lay a strong foundation for retrieving foliar biochemical content using hyperspectral remote sensing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYLynn应助hetao286采纳,获得10
刚刚
2秒前
2秒前
夯大力发布了新的文献求助10
2秒前
2秒前
3秒前
自觉沛芹完成签到,获得积分10
3秒前
YukiXu完成签到 ,获得积分10
3秒前
3秒前
桐桐应助SXM采纳,获得10
4秒前
波特卡斯D艾斯完成签到 ,获得积分10
5秒前
852应助排骨炖豆角采纳,获得10
6秒前
6秒前
顾矜应助木子采纳,获得10
6秒前
feng发布了新的文献求助10
6秒前
成就的小熊猫完成签到,获得积分10
7秒前
7秒前
Morgenstern_ZH完成签到,获得积分10
8秒前
hua发布了新的文献求助10
8秒前
_Forelsket_完成签到,获得积分10
8秒前
8秒前
半颗橙子完成签到 ,获得积分10
10秒前
科研通AI5应助zmy采纳,获得10
10秒前
善学以致用应助enoot采纳,获得10
11秒前
JamesPei应助失眠的血茗采纳,获得10
11秒前
青山发布了新的文献求助10
11秒前
亻鱼发布了新的文献求助10
12秒前
脑洞疼应助成就的小熊猫采纳,获得10
12秒前
12秒前
waterclouds完成签到 ,获得积分10
12秒前
圆圈儿完成签到,获得积分10
12秒前
司空剑封完成签到,获得积分10
13秒前
13秒前
海棠yiyi完成签到,获得积分10
13秒前
13秒前
梁小鑫发布了新的文献求助10
13秒前
Jenny应助圈圈采纳,获得10
14秒前
内向青文完成签到,获得积分10
14秒前
lefora完成签到,获得积分10
14秒前
丰知然应助CO2采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740