Selection of Informative Spectral Bands for PLS Models to Estimate Foliar Chlorophyll Content Using Hyperspectral Reflectance

高光谱成像 偏最小二乘回归 遥感 光谱带 选择(遗传算法) 航程(航空) 回归 内容(测量理论) 反射率 均方误差 光谱分辨率 近红外光谱 回归分析 逐步回归 叶绿素 计算机科学 模式识别(心理学) 数学 人工智能 谱线 统计 植物 材料科学 生物 光学 地理 物理 数学分析 复合材料 天文
作者
Jia Jin,Quan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (5): 3064-3072 被引量:31
标识
DOI:10.1109/tgrs.2018.2880193
摘要

Partial least-squares (PLS) regression is a popular method for modeling chemical constituents from spectroscopic data and has been widely applied to retrieve leaf chemical components via hyperspectral remote sensing. However, one persistent challenge for applying the PLS regression is the selection of informative spectral bands among the vast array of acquired spectra. No consensus has been reached yet on how to select informative bands regardless of many techniques being proposed. In this paper, we have composited four individual data sets containing a total of 598 leaf samples from various species to evaluate four different band elimination/selection methods. Results revealed that the stepwise-PLS approach was optimal to estimate leaf chlorophyll content even under different spectral resolutions, from which informative bands were identified. Informative bands, in general, include bands inside the near-infrared (NIR), and in addition, one within the blue range and one within the red range. With such combinations, the PLS regression models meet the requirement for accurate leaf chlorophyll estimation. For most PLS regression models, their accuracies decreased with the reduction of spectral resolution, but the stepwise-PLS approach could consistently estimate the chlorophyll content at different spectral resolutions (with R2 ≥ 0.77 for resolutions <; 20 nm). The findings, hence, provide valuable insights for selecting informative spectral bands for PLS analysis and lay a strong foundation for retrieving foliar biochemical content using hyperspectral remote sensing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
天天快乐应助asir_xw采纳,获得10
1秒前
1秒前
2秒前
从容的巧曼完成签到 ,获得积分10
2秒前
687发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
猪头完成签到 ,获得积分10
4秒前
jia发布了新的文献求助10
6秒前
sssss完成签到 ,获得积分10
6秒前
6秒前
哈哈嘻嘻完成签到,获得积分10
6秒前
奶昔发布了新的文献求助10
7秒前
mrmrer完成签到,获得积分10
7秒前
Baibai发布了新的文献求助10
7秒前
7秒前
Ammon发布了新的文献求助10
8秒前
你大米哥完成签到 ,获得积分0
8秒前
才是自由完成签到,获得积分20
8秒前
8秒前
Cruffin发布了新的文献求助10
8秒前
NexusExplorer应助tan90采纳,获得10
9秒前
猪头关注了科研通微信公众号
9秒前
guangshuang发布了新的文献求助10
9秒前
贤惠的爆米花完成签到,获得积分10
10秒前
11秒前
linhongwei完成签到,获得积分10
11秒前
英姑应助Jared采纳,获得10
12秒前
善学以致用应助催催催采纳,获得10
13秒前
12138发布了新的文献求助10
14秒前
勾勾完成签到 ,获得积分10
14秒前
15秒前
可爱迷人的反派角色完成签到,获得积分10
15秒前
16秒前
mqq发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
陌上发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051