清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Selection of Informative Spectral Bands for PLS Models to Estimate Foliar Chlorophyll Content Using Hyperspectral Reflectance

高光谱成像 偏最小二乘回归 遥感 光谱带 选择(遗传算法) 航程(航空) 回归 内容(测量理论) 反射率 均方误差 光谱分辨率 近红外光谱 回归分析 逐步回归 叶绿素 计算机科学 模式识别(心理学) 数学 人工智能 谱线 统计 植物 材料科学 生物 光学 地理 物理 数学分析 复合材料 天文
作者
Jia Jin,Quan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (5): 3064-3072 被引量:31
标识
DOI:10.1109/tgrs.2018.2880193
摘要

Partial least-squares (PLS) regression is a popular method for modeling chemical constituents from spectroscopic data and has been widely applied to retrieve leaf chemical components via hyperspectral remote sensing. However, one persistent challenge for applying the PLS regression is the selection of informative spectral bands among the vast array of acquired spectra. No consensus has been reached yet on how to select informative bands regardless of many techniques being proposed. In this paper, we have composited four individual data sets containing a total of 598 leaf samples from various species to evaluate four different band elimination/selection methods. Results revealed that the stepwise-PLS approach was optimal to estimate leaf chlorophyll content even under different spectral resolutions, from which informative bands were identified. Informative bands, in general, include bands inside the near-infrared (NIR), and in addition, one within the blue range and one within the red range. With such combinations, the PLS regression models meet the requirement for accurate leaf chlorophyll estimation. For most PLS regression models, their accuracies decreased with the reduction of spectral resolution, but the stepwise-PLS approach could consistently estimate the chlorophyll content at different spectral resolutions (with R2 ≥ 0.77 for resolutions <; 20 nm). The findings, hence, provide valuable insights for selecting informative spectral bands for PLS analysis and lay a strong foundation for retrieving foliar biochemical content using hyperspectral remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
13秒前
淡然的剑通完成签到 ,获得积分10
19秒前
耍酷鼠标完成签到 ,获得积分0
24秒前
孙老师完成签到 ,获得积分10
37秒前
Heart_of_Stone完成签到 ,获得积分10
43秒前
俏皮元珊完成签到 ,获得积分10
48秒前
宝贝完成签到 ,获得积分10
51秒前
xiaofeixia完成签到 ,获得积分10
53秒前
LiangRen完成签到 ,获得积分10
1分钟前
AneyWinter66应助微S采纳,获得10
1分钟前
小田完成签到 ,获得积分10
1分钟前
goodsheep完成签到 ,获得积分10
1分钟前
helen李完成签到 ,获得积分10
1分钟前
赵赵完成签到 ,获得积分10
1分钟前
科科通通完成签到,获得积分10
1分钟前
柴郡喵完成签到,获得积分10
1分钟前
0m0完成签到 ,获得积分10
1分钟前
zm完成签到 ,获得积分10
1分钟前
大饼完成签到 ,获得积分10
2分钟前
空白完成签到 ,获得积分10
2分钟前
xinjiasuki完成签到 ,获得积分10
2分钟前
2分钟前
小天小天完成签到 ,获得积分10
2分钟前
白昼完成签到 ,获得积分10
2分钟前
弧光完成签到 ,获得积分0
2分钟前
feiyang完成签到 ,获得积分10
2分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
图南完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
zw完成签到,获得积分10
3分钟前
Xzx1995完成签到 ,获得积分10
3分钟前
如意书桃完成签到 ,获得积分10
3分钟前
大雪完成签到 ,获得积分10
3分钟前
3分钟前
年轻千愁完成签到 ,获得积分10
3分钟前
蔡勇强完成签到 ,获得积分10
3分钟前
Wenwen0809完成签到 ,获得积分20
3分钟前
海贼王的男人完成签到 ,获得积分10
4分钟前
从全世界路过完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628626
求助须知:如何正确求助?哪些是违规求助? 4717900
关于积分的说明 14964650
捐赠科研通 4786466
什么是DOI,文献DOI怎么找? 2555860
邀请新用户注册赠送积分活动 1517014
关于科研通互助平台的介绍 1477700