Selection of Informative Spectral Bands for PLS Models to Estimate Foliar Chlorophyll Content Using Hyperspectral Reflectance

高光谱成像 偏最小二乘回归 遥感 光谱带 选择(遗传算法) 航程(航空) 回归 内容(测量理论) 反射率 均方误差 光谱分辨率 近红外光谱 回归分析 逐步回归 叶绿素 计算机科学 模式识别(心理学) 数学 人工智能 谱线 统计 植物 材料科学 生物 光学 地理 物理 数学分析 复合材料 天文
作者
Jia Jin,Quan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (5): 3064-3072 被引量:31
标识
DOI:10.1109/tgrs.2018.2880193
摘要

Partial least-squares (PLS) regression is a popular method for modeling chemical constituents from spectroscopic data and has been widely applied to retrieve leaf chemical components via hyperspectral remote sensing. However, one persistent challenge for applying the PLS regression is the selection of informative spectral bands among the vast array of acquired spectra. No consensus has been reached yet on how to select informative bands regardless of many techniques being proposed. In this paper, we have composited four individual data sets containing a total of 598 leaf samples from various species to evaluate four different band elimination/selection methods. Results revealed that the stepwise-PLS approach was optimal to estimate leaf chlorophyll content even under different spectral resolutions, from which informative bands were identified. Informative bands, in general, include bands inside the near-infrared (NIR), and in addition, one within the blue range and one within the red range. With such combinations, the PLS regression models meet the requirement for accurate leaf chlorophyll estimation. For most PLS regression models, their accuracies decreased with the reduction of spectral resolution, but the stepwise-PLS approach could consistently estimate the chlorophyll content at different spectral resolutions (with R2 ≥ 0.77 for resolutions <; 20 nm). The findings, hence, provide valuable insights for selecting informative spectral bands for PLS analysis and lay a strong foundation for retrieving foliar biochemical content using hyperspectral remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇遇遇发布了新的文献求助10
1秒前
1秒前
2秒前
欣喜安蕾完成签到,获得积分10
2秒前
川上富江发布了新的文献求助10
2秒前
3秒前
落后的慕梅完成签到 ,获得积分10
4秒前
Shh发布了新的文献求助10
4秒前
冯科发布了新的文献求助10
5秒前
6秒前
文艺的蜜蜂完成签到 ,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
asdfzxcv应助科研通管家采纳,获得10
6秒前
明天发布了新的文献求助10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
干净寻冬应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
8秒前
freedom给freedom的求助进行了留言
8秒前
浮游应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
8秒前
慕青应助qy采纳,获得10
9秒前
吴大宝发布了新的文献求助10
10秒前
11秒前
12秒前
liuhongcan完成签到,获得积分10
12秒前
meng完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653193
求助须知:如何正确求助?哪些是违规求助? 4789427
关于积分的说明 15063229
捐赠科研通 4811788
什么是DOI,文献DOI怎么找? 2574069
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488465