阈下传导
时间分辨率
毫秒
双光子激发显微术
神经影像学
神经科学
荧光寿命成像显微镜
运动前神经元活动
物理
材料科学
电压
荧光
光学
生物
晶体管
量子力学
天文
作者
Mariya Chavarha,Vincent Villette,Ivan K. Dimov,Lagnajeet Pradhan,Stephen W. Evans,Dongqing Shi,Renzhi Yang,Simon Chamberland,Jonathan Bradley,Benjamin Mathieu,François St-Pierre,Mark J. Schnitzer,Guo‐Qiang Bi,Katalin Tóth,Katalin Tóth,Stéphane Dieudonné,Michael Z. Lin
摘要
ABSTRACT Imaging of transmembrane voltage deep in brain tissue with cellular resolution has the potential to reveal information processing by neuronal circuits in living animals with minimal perturbation. Multi-photon voltage imaging in vivo , however, is currently limited by speed and sensitivity of both indicators and imaging methods. Here, we report the engineering of an improved genetically encoded voltage indicator, ASAP3, which exhibits up to 51% fluorescence responses in the physiological voltage range, sub-millisecond activation kinetics, and full responsivity under two-photon illumination. We also introduce an ultrafast local volume excitation (ULOVE) two-photon scanning method to sample ASAP3 signals in awake mice at kilohertz rates with increased stability and sensitivity. ASAP3 and ULOVE allowed continuous single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution, and with repeated sampling over multiple days. By imaging voltage in visual cortex neurons, we found evidence for cell type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULOVE enable continuous high-speed high-resolution imaging of electrical activity in deeply located genetically defined neurons during awake behavior.
科研通智能强力驱动
Strongly Powered by AbleSci AI