Fast two-photon volumetric imaging of an improved voltage indicator reveals electrical activity in deeply located neurons in the awake brain

阈下传导 时间分辨率 毫秒 双光子激发显微术 神经影像学 神经科学 荧光寿命成像显微镜 运动前神经元活动 物理 材料科学 电压 荧光 光学 生物 晶体管 量子力学 天文
作者
Mariya Chavarha,Vincent Villette,Ivan K. Dimov,Lagnajeet Pradhan,Stephen W. Evans,Dongqing Shi,Renzhi Yang,Simon Chamberland,Jonathan Bradley,Benjamin Mathieu,François St-Pierre,Mark J. Schnitzer,Guo‐Qiang Bi,Katalin Tóth,Katalin Tóth,Stéphane Dieudonné,Michael Z. Lin
标识
DOI:10.1101/445064
摘要

ABSTRACT Imaging of transmembrane voltage deep in brain tissue with cellular resolution has the potential to reveal information processing by neuronal circuits in living animals with minimal perturbation. Multi-photon voltage imaging in vivo , however, is currently limited by speed and sensitivity of both indicators and imaging methods. Here, we report the engineering of an improved genetically encoded voltage indicator, ASAP3, which exhibits up to 51% fluorescence responses in the physiological voltage range, sub-millisecond activation kinetics, and full responsivity under two-photon illumination. We also introduce an ultrafast local volume excitation (ULOVE) two-photon scanning method to sample ASAP3 signals in awake mice at kilohertz rates with increased stability and sensitivity. ASAP3 and ULOVE allowed continuous single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution, and with repeated sampling over multiple days. By imaging voltage in visual cortex neurons, we found evidence for cell type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULOVE enable continuous high-speed high-resolution imaging of electrical activity in deeply located genetically defined neurons during awake behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助奔奔采纳,获得10
刚刚
1秒前
1秒前
Owen应助西哈哈采纳,获得10
1秒前
Jessie完成签到 ,获得积分10
1秒前
烟花应助孔雨珍采纳,获得10
2秒前
王小志发布了新的文献求助10
2秒前
科研通AI5应助SCI采纳,获得10
2秒前
net完成签到 ,获得积分10
2秒前
Sally完成签到,获得积分10
3秒前
飘逸蘑菇完成签到 ,获得积分10
3秒前
4秒前
小二郎应助tao采纳,获得10
4秒前
陈丫发布了新的文献求助10
4秒前
4秒前
4秒前
小二郎应助凉风有信9527采纳,获得10
5秒前
LEMON发布了新的文献求助20
6秒前
炜大的我完成签到,获得积分10
6秒前
haimianbaobao发布了新的文献求助10
6秒前
传奇3应助研友_nPoXoL采纳,获得10
6秒前
lpp完成签到,获得积分10
6秒前
6秒前
ww发布了新的文献求助10
6秒前
22发布了新的文献求助10
7秒前
zhui发布了新的文献求助10
7秒前
8秒前
Jenny应助哈哈哈哈采纳,获得10
9秒前
笨笨芯应助Miracle采纳,获得10
9秒前
研友_LJGpan完成签到,获得积分10
9秒前
xiaozhenA完成签到,获得积分10
9秒前
junzilan发布了新的文献求助10
9秒前
云澈发布了新的文献求助10
9秒前
Hello paper发布了新的文献求助20
10秒前
a111完成签到,获得积分10
10秒前
乐乐应助zzznznnn采纳,获得10
10秒前
哈哈完成签到,获得积分20
11秒前
阳光衣完成签到,获得积分0
11秒前
13秒前
苏兴龙关注了科研通微信公众号
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794