Soft robot perception using embedded soft sensors and recurrent neural networks

感知 机器人 计算机科学 人工神经网络 软机器人 人工智能 心理学 人机交互 计算机视觉 神经科学
作者
Thomas George Thuruthel,Benjamin Shih,Cecilia Laschi,Michael T. Tolley
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:4 (26) 被引量:498
标识
DOI:10.1126/scirobotics.aav1488
摘要

Recent work has begun to explore the design of biologically inspired soft robots composed of soft, stretchable materials for applications including the handling of delicate materials and safe interaction with humans. However, the solid-state sensors traditionally used in robotics are unable to capture the high-dimensional deformations of soft systems. Embedded soft resistive sensors have the potential to address this challenge. However, both the soft sensors-and the encasing dynamical system-often exhibit nonlinear time-variant behavior, which makes them difficult to model. In addition, the problems of sensor design, placement, and fabrication require a great deal of human input and previous knowledge. Drawing inspiration from the human perceptive system, we created a synthetic analog. Our synthetic system builds models using a redundant and unstructured sensor topology embedded in a soft actuator, a vision-based motion capture system for ground truth, and a general machine learning approach. This allows us to model an unknown soft actuated system. We demonstrate that the proposed approach is able to model the kinematics of a soft continuum actuator in real time while being robust to sensor nonlinearities and drift. In addition, we show how the same system can estimate the applied forces while interacting with external objects. The role of action in perception is also presented. This approach enables the development of force and deformation models for soft robotic systems, which can be useful for a variety of applications, including human-robot interaction, soft orthotics, and wearable robotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪半雪完成签到,获得积分10
刚刚
1秒前
科研小白完成签到,获得积分10
1秒前
1秒前
cy发布了新的文献求助10
3秒前
可爱的函函应助雨林采纳,获得10
3秒前
杨海菡发布了新的文献求助10
3秒前
RiRi发布了新的文献求助10
4秒前
简单的易云完成签到,获得积分10
4秒前
小二郎应助twk123采纳,获得10
6秒前
安详的冷安完成签到,获得积分10
6秒前
劲秉应助沫沫沫沫采纳,获得10
6秒前
compchem发布了新的文献求助10
6秒前
甜甜圈完成签到,获得积分10
7秒前
研究啥完成签到,获得积分10
7秒前
9秒前
草莓完成签到,获得积分10
9秒前
Phosphene应助zhangjing采纳,获得10
9秒前
杨海菡完成签到,获得积分10
10秒前
真金小子发布了新的文献求助10
11秒前
13秒前
13秒前
Zzz_Carlos完成签到,获得积分10
13秒前
13秒前
13秒前
丘比特应助ljw采纳,获得10
14秒前
海风发布了新的文献求助10
15秒前
aT完成签到,获得积分10
15秒前
提莫蘑菇完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
就这发布了新的文献求助10
16秒前
从容如波完成签到,获得积分10
17秒前
子车茗应助yhdeng采纳,获得30
17秒前
18秒前
简单的丑发布了新的文献求助10
18秒前
公西傲蕾发布了新的文献求助10
19秒前
20秒前
爰采唐矣发布了新的文献求助10
21秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348426
求助须知:如何正确求助?哪些是违规求助? 2974660
关于积分的说明 8665159
捐赠科研通 2655280
什么是DOI,文献DOI怎么找? 1453945
科研通“疑难数据库(出版商)”最低求助积分说明 673175
邀请新用户注册赠送积分活动 663411