已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-efficiency generation of fertile transplastomic Arabidopsis plants

质体 生物 基因组 拟南芥 清脆的 转化(遗传学) 基因组工程 Cas9 基因组编辑 计算生物学 遗传学 叶绿体 基因 突变体
作者
Stephanie Ruf,Joachim Forner,Claudia Hasse,Xenia Kroop,Stefanie Seeger,Laura Schollbach,Anne Schadach,Ralph Bock
出处
期刊:Nature plants [Springer Nature]
卷期号:5 (3): 282-289 被引量:60
标识
DOI:10.1038/s41477-019-0359-2
摘要

The development of technologies for the stable genetic transformation of plastid (chloroplast) genomes has been a boon to both basic and applied research. However, extension of the transplastomic technology to major crops and model plants has proven extremely challenging, and the species range of plastid transformation is still very much limited in that most species currently remain recalcitrant to plastid genome engineering. Here, we report an efficient plastid transformation technology for the model plant Arabidopsis thaliana that relies on root-derived microcalli as a source tissue for biolistic transformation. The method produces fertile transplastomic plants at high frequency when combined with a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9)-generated knockout allele of a nuclear locus that enhances sensitivity to the selection agent used for isolation of transplastomic events. Our work makes the model organism of plant biology amenable to routine engineering of the plastid genome, facilitates the combination of plastid engineering with the power of Arabidopsis nuclear genetics, and informs the future development of plastid transformation protocols for other recalcitrant species. Plastid genome engineering has been challenging in crops and model plants. Now, a method enables efficient plastid transformation by taking advantage of root-derived microcalli as source tissue and the knockout of a nuclear gene for efficient screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助欢呼凡旋采纳,获得10
1秒前
宵宫完成签到,获得积分10
2秒前
3秒前
shanyuee应助勤恳的凌雪采纳,获得10
4秒前
大个应助LaLune采纳,获得10
5秒前
lxy完成签到,获得积分10
6秒前
6秒前
灵巧妙芙发布了新的文献求助10
7秒前
8秒前
研友_LMpo68发布了新的文献求助10
8秒前
科目三应助俭朴大碗采纳,获得10
8秒前
10秒前
11秒前
idiot发布了新的文献求助10
11秒前
所所应助lx采纳,获得10
12秒前
14秒前
kiki发布了新的文献求助10
14秒前
14秒前
15秒前
星辰大海应助Yuetong采纳,获得10
15秒前
肉球发布了新的文献求助10
15秒前
踏实的傲白完成签到 ,获得积分10
16秒前
拖把丶发布了新的文献求助10
16秒前
LaLune发布了新的文献求助10
17秒前
靓丽宛亦完成签到,获得积分10
17秒前
gghh发布了新的文献求助10
17秒前
19秒前
20秒前
科研通AI5应助ning采纳,获得10
21秒前
22秒前
ding应助LaLune采纳,获得10
22秒前
科研通AI2S应助拖把丶采纳,获得10
24秒前
24秒前
彭于晏应助lxy采纳,获得10
24秒前
晴天完成签到,获得积分10
25秒前
25秒前
25秒前
25秒前
mini发布了新的文献求助10
26秒前
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477191
求助须知:如何正确求助?哪些是违规求助? 3068711
关于积分的说明 9109134
捐赠科研通 2760134
什么是DOI,文献DOI怎么找? 1514673
邀请新用户注册赠送积分活动 700422
科研通“疑难数据库(出版商)”最低求助积分说明 699487