电化学
化学
电合成
电池(电)
电解质
锂(药物)
组合化学
阳极
有机合成
溶解
无机化学
有机化学
电极
催化作用
物理
内分泌学
物理化学
功率(物理)
医学
量子力学
作者
Byron K. Peters,Kevin X. Rodriguez,Solomon H. Reisberg,Sebastian B. Beil,David P. Hickey,Yu Kawamata,Michael R. Collins,Jeremy T. Starr,Longrui Chen,Sagar Udyavara,Kevin J. Klunder,Timothy J. Gorey,Scott L. Anderson,Matthew Neurock,Shelley D. Minteer,Phil S. Baran
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2019-02-22
卷期号:363 (6429): 838-845
被引量:381
标识
DOI:10.1126/science.aav5606
摘要
Reductive electrosynthesis has faced long-standing challenges in applications to complex organic substrates at scale. Here, we show how decades of research in lithium-ion battery materials, electrolytes, and additives can serve as an inspiration for achieving practically scalable reductive electrosynthetic conditions for the Birch reduction. Specifically, we demonstrate that using a sacrificial anode material (magnesium or aluminum), combined with a cheap, nontoxic, and water-soluble proton source (dimethylurea), and an overcharge protectant inspired by battery technology [tris(pyrrolidino)phosphoramide] can allow for multigram-scale synthesis of pharmaceutically relevant building blocks. We show how these conditions have a very high level of functional-group tolerance relative to classical electrochemical and chemical dissolving-metal reductions. Finally, we demonstrate that the same electrochemical conditions can be applied to other dissolving metal-type reductive transformations, including McMurry couplings, reductive ketone deoxygenations, and epoxide openings.
科研通智能强力驱动
Strongly Powered by AbleSci AI