微卫星不稳定性
胃肠道癌
组织学
免疫疗法
医学
癌症
生物
微卫星
肿瘤科
病理
结直肠癌
内科学
基因
遗传学
等位基因
作者
Jakob Nikolas Kather,Alexander T. Pearson,Niels Halama,Dirk Jäger,Jeremias Krause,Sven H. Loosen,Alexander Marx,Peter Boor,Frank Tacke,Ulf P. Neumann,Heike I. Grabsch,Takaki Yoshikawa,Hermann Brenner,Jenny Chang‐Claude,Michael Hoffmeister,Christian Trautwein,Tom Luedde
出处
期刊:Nature Medicine
[Nature Portfolio]
日期:2019-06-03
卷期号:25 (7): 1054-1056
被引量:1030
标识
DOI:10.1038/s41591-019-0462-y
摘要
Microsatellite instability determines whether patients with gastrointestinal cancer respond exceptionally well to immunotherapy. However, in clinical practice, not every patient is tested for MSI, because this requires additional genetic or immunohistochemical tests. Here we show that deep residual learning can predict MSI directly from H&E histology, which is ubiquitously available. This approach has the potential to provide immunotherapy to a much broader subset of patients with gastrointestinal cancer. A deep residual learning framework identifies microsatellite instability in histology slides from patients with cancer and can be used to guide immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI