亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study

医学 甲状腺癌 甲状腺 癌症 放射科 回顾性队列研究 卷积神经网络 内科学 病理 人工智能 计算机科学
作者
Xiangchun Li,Sheng Zhang,Qiang Zhang,Xi Wei,Yi Pan,Jing Zhao,Xiaojie Xin,Chunxin Qin,Xiaoqing Wang,Jianxin Li,Fan Yang,Yanhui Zhao,Meng Yang,Qinghua Wang,Zhi‐Ming Zheng,Xiangqian Zheng,Xiangming Yang,Christopher T. Whitlow,Metin N. Gürcan,Lun Zhang
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:20 (2): 193-201 被引量:369
标识
DOI:10.1016/s1470-2045(18)30762-9
摘要

The incidence of thyroid cancer is rising steadily because of overdiagnosis and overtreatment conferred by widespread use of sensitive imaging techniques for screening. This overall incidence growth is especially driven by increased diagnosis of indolent and well-differentiated papillary subtype and early-stage thyroid cancer, whereas the incidence of advanced-stage thyroid cancer has increased marginally. Thyroid ultrasound is frequently used to diagnose thyroid cancer. The aim of this study was to use deep convolutional neural network (DCNN) models to improve the diagnostic accuracy of thyroid cancer by analysing sonographic imaging data from clinical ultrasounds.We did a retrospective, multicohort, diagnostic study using ultrasound images sets from three hospitals in China. We developed and trained the DCNN model on the training set, 131 731 ultrasound images from 17 627 patients with thyroid cancer and 180 668 images from 25 325 controls from the thyroid imaging database at Tianjin Cancer Hospital. Clinical diagnosis of the training set was made by 16 radiologists from Tianjin Cancer Hospital. Images from anatomical sites that were judged as not having cancer were excluded from the training set and only individuals with suspected thyroid cancer underwent pathological examination to confirm diagnosis. The model's diagnostic performance was validated in an internal validation set from Tianjin Cancer Hospital (8606 images from 1118 patients) and two external datasets in China (the Integrated Traditional Chinese and Western Medicine Hospital, Jilin, 741 images from 154 patients; and the Weihai Municipal Hospital, Shandong, 11 039 images from 1420 patients). All individuals with suspected thyroid cancer after clinical examination in the validation sets had pathological examination. We also compared the specificity and sensitivity of the DCNN model with the performance of six skilled thyroid ultrasound radiologists on the three validation sets.Between Jan 1, 2012, and March 28, 2018, ultrasound images for the four study cohorts were obtained. The model achieved high performance in identifying thyroid cancer patients in the validation sets tested, with area under the curve values of 0·947 (95% CI 0·935-0·959) for the Tianjin internal validation set, 0·912 (95% CI 0·865-0·958) for the Jilin external validation set, and 0·908 (95% CI 0·891-0·925) for the Weihai external validation set. The DCNN model also showed improved performance in identifying thyroid cancer patients versus skilled radiologists. For the Tianjin internal validation set, sensitivity was 93·4% (95% CI 89·6-96·1) versus 96·9% (93·9-98·6; p=0·003) and specificity was 86·1% (81·1-90·2) versus 59·4% (53·0-65·6; p<0·0001). For the Jilin external validation set, sensitivity was 84·3% (95% CI 73·6-91·9) versus 92·9% (84·1-97·6; p=0·048) and specificity was 86·9% (95% CI 77·8-93·3) versus 57·1% (45·9-67·9; p<0·0001). For the Weihai external validation set, sensitivity was 84·7% (95% CI 77·0-90·7) versus 89·0% (81·9-94·0; p=0·25) and specificity was 87·8% (95% CI 81·6-92·5) versus 68·6% (60·7-75·8; p<0·0001).The DCNN model showed similar sensitivity and improved specificity in identifying patients with thyroid cancer compared with a group of skilled radiologists. The improved technical performance of the DCNN model warrants further investigation as part of randomised clinical trials.The Program for Changjiang Scholars and Innovative Research Team in University in China, and National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助张志超采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
wly完成签到,获得积分10
17秒前
20秒前
flyinthesky完成签到,获得积分10
25秒前
32秒前
SciGPT应助aqing采纳,获得10
32秒前
37秒前
41秒前
aqing发布了新的文献求助10
46秒前
张晓祁完成签到,获得积分10
46秒前
大模型应助盐碱地杂草采纳,获得10
50秒前
yueying完成签到,获得积分10
58秒前
张志超发布了新的文献求助10
1分钟前
Kowalski发布了新的文献求助10
1分钟前
程晓研完成签到 ,获得积分10
1分钟前
1分钟前
平常的德天完成签到,获得积分20
1分钟前
1分钟前
Kowalski完成签到,获得积分10
1分钟前
科研通AI6应助火星上念梦采纳,获得10
1分钟前
2分钟前
贾贾完成签到 ,获得积分10
2分钟前
2分钟前
后陡门爱神完成签到 ,获得积分10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
Unshouable完成签到,获得积分10
2分钟前
简柠发布了新的文献求助10
2分钟前
FAYE发布了新的文献求助10
2分钟前
FAYE完成签到,获得积分20
2分钟前
冰西瓜完成签到 ,获得积分0
2分钟前
suilan完成签到 ,获得积分10
2分钟前
大意的晓亦完成签到 ,获得积分0
2分钟前
2分钟前
leo完成签到,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232484
求助须知:如何正确求助?哪些是违规求助? 4401772
关于积分的说明 13699328
捐赠科研通 4268152
什么是DOI,文献DOI怎么找? 2342364
邀请新用户注册赠送积分活动 1339409
关于科研通互助平台的介绍 1296070