Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study

医学 甲状腺癌 过度诊断 甲状腺 癌症 放射科 回顾性队列研究 入射(几何) 阶段(地层学) 卷积神经网络 内科学 人工智能 物理 古生物学 光学 生物 计算机科学
作者
Xiangchun Li,Sheng Zhang,Qiang Zhang,Xi Wei,Yi Pan,Jing Zhao,Xiaojie Xin,Chunxin Qin,Xiaoqing Wang,Jianxin Li,Fan Yang,Yanhui Zhao,Meng Yang,Qinghua Wang,Zhi‐Ming Zheng,Xiangqian Zheng,Xiangming Yang,Christopher T. Whitlow,Metin N. Gürcan,Lun Zhang,Xudong Wang,Boris Pasche,Ming Gao,Wei Zhang,Kexin Chen
出处
期刊:Lancet Oncology [Elsevier]
卷期号:20 (2): 193-201 被引量:323
标识
DOI:10.1016/s1470-2045(18)30762-9
摘要

The incidence of thyroid cancer is rising steadily because of overdiagnosis and overtreatment conferred by widespread use of sensitive imaging techniques for screening. This overall incidence growth is especially driven by increased diagnosis of indolent and well-differentiated papillary subtype and early-stage thyroid cancer, whereas the incidence of advanced-stage thyroid cancer has increased marginally. Thyroid ultrasound is frequently used to diagnose thyroid cancer. The aim of this study was to use deep convolutional neural network (DCNN) models to improve the diagnostic accuracy of thyroid cancer by analysing sonographic imaging data from clinical ultrasounds.We did a retrospective, multicohort, diagnostic study using ultrasound images sets from three hospitals in China. We developed and trained the DCNN model on the training set, 131 731 ultrasound images from 17 627 patients with thyroid cancer and 180 668 images from 25 325 controls from the thyroid imaging database at Tianjin Cancer Hospital. Clinical diagnosis of the training set was made by 16 radiologists from Tianjin Cancer Hospital. Images from anatomical sites that were judged as not having cancer were excluded from the training set and only individuals with suspected thyroid cancer underwent pathological examination to confirm diagnosis. The model's diagnostic performance was validated in an internal validation set from Tianjin Cancer Hospital (8606 images from 1118 patients) and two external datasets in China (the Integrated Traditional Chinese and Western Medicine Hospital, Jilin, 741 images from 154 patients; and the Weihai Municipal Hospital, Shandong, 11 039 images from 1420 patients). All individuals with suspected thyroid cancer after clinical examination in the validation sets had pathological examination. We also compared the specificity and sensitivity of the DCNN model with the performance of six skilled thyroid ultrasound radiologists on the three validation sets.Between Jan 1, 2012, and March 28, 2018, ultrasound images for the four study cohorts were obtained. The model achieved high performance in identifying thyroid cancer patients in the validation sets tested, with area under the curve values of 0·947 (95% CI 0·935-0·959) for the Tianjin internal validation set, 0·912 (95% CI 0·865-0·958) for the Jilin external validation set, and 0·908 (95% CI 0·891-0·925) for the Weihai external validation set. The DCNN model also showed improved performance in identifying thyroid cancer patients versus skilled radiologists. For the Tianjin internal validation set, sensitivity was 93·4% (95% CI 89·6-96·1) versus 96·9% (93·9-98·6; p=0·003) and specificity was 86·1% (81·1-90·2) versus 59·4% (53·0-65·6; p<0·0001). For the Jilin external validation set, sensitivity was 84·3% (95% CI 73·6-91·9) versus 92·9% (84·1-97·6; p=0·048) and specificity was 86·9% (95% CI 77·8-93·3) versus 57·1% (45·9-67·9; p<0·0001). For the Weihai external validation set, sensitivity was 84·7% (95% CI 77·0-90·7) versus 89·0% (81·9-94·0; p=0·25) and specificity was 87·8% (95% CI 81·6-92·5) versus 68·6% (60·7-75·8; p<0·0001).The DCNN model showed similar sensitivity and improved specificity in identifying patients with thyroid cancer compared with a group of skilled radiologists. The improved technical performance of the DCNN model warrants further investigation as part of randomised clinical trials.The Program for Changjiang Scholars and Innovative Research Team in University in China, and National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万事胜意发布了新的文献求助10
刚刚
刚刚
1秒前
xiaowang发布了新的文献求助10
1秒前
月yue完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助青青采纳,获得10
1秒前
朱博发布了新的文献求助10
2秒前
ETA发布了新的文献求助10
2秒前
3秒前
枝枝发布了新的文献求助10
3秒前
xcr发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助孤独的AD钙采纳,获得10
4秒前
4秒前
泡泡儿发布了新的文献求助10
5秒前
5秒前
超喜欢你发布了新的文献求助10
6秒前
所所应助LO7pM2采纳,获得30
6秒前
3AM发布了新的文献求助10
7秒前
Lay完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
张先伟发布了新的文献求助30
9秒前
shuaideyapi发布了新的文献求助10
9秒前
洛花羽落发布了新的文献求助10
9秒前
HY完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
Nemo1234发布了新的文献求助10
11秒前
科目三应助优雅雅绿采纳,获得10
12秒前
vino发布了新的文献求助10
12秒前
yzyzzyzz51完成签到,获得积分10
12秒前
JXL发布了新的文献求助10
12秒前
13秒前
单于思雁发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655