Automatic stenosis recognition from coronary angiography using convolutional neural networks

人工智能 狭窄 计算机科学 卷积神经网络 医学 深度学习 分割 血管造影 放射科 右冠状动脉 关键帧 特征(语言学) 帧(网络) 模式识别(心理学) 计算机视觉 冠状动脉造影 心脏病学 心肌梗塞 哲学 电信 语言学
作者
Jong Hak Moon,Da Young Lee,Won Chul,Myung Jin Chung,Kyu‐Sung Lee,Baek Hwan Cho,Jin Ho Choi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:198: 105819-105819 被引量:84
标识
DOI:10.1016/j.cmpb.2020.105819
摘要

Coronary artery disease, which is mostly caused by atherosclerotic narrowing of the coronary artery lumen, is a leading cause of death. Coronary angiography is the standard method to estimate the severity of coronary artery stenosis, but is frequently limited by intra- and inter-observer variations. We propose a deep-learning algorithm that automatically recognizes stenosis in coronary angiographic images. The proposed method consists of key frame detection, deep learning model training for classification of stenosis on each key frame, and visualization of the possible location of the stenosis. Firstly, we propose an algorithm that automatically extracts key frames essential for diagnosis from 452 right coronary artery angiography movie clips. Our deep learning model is then trained with image-level annotations to classify the areas narrowed by over 50 %. To make the model focus on the salient features, we apply a self-attention mechanism. The stenotic locations are visualized using the activated area of feature maps with gradient-weighted class activation mapping. The automatically detected key frame was very close to the manually selected key frame (average distance (1.70 ± 0.12) frame per clip). The model was trained with key frames on internal datasets, and validated with internal and external datasets. Our training method achieved high frame-wise area-under-the-curve of 0.971, frame-wise accuracy of 0.934, and clip-wise accuracy of 0.965 in the average values of cross-validation evaluations. The external validation results showed high performances with the mean frame-wise area-under-the-curve of (0.925 and 0.956) in the single and ensemble model, respectively. Heat map visualization shows the location for different types of stenosis in both internal and external data sets. With the self-attention mechanism, the stenosis could be precisely localized, which helps to accurately classify the stenosis by type. Our automated classification algorithm could recognize and localize coronary artery stenosis highly accurately. Our approach might provide the basis for a screening and assistant tool for the interpretation of coronary angiography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真若云发布了新的文献求助10
1秒前
1秒前
sophieCCM0302发布了新的文献求助10
1秒前
2秒前
2秒前
7777777发布了新的文献求助10
3秒前
小泉发布了新的文献求助10
4秒前
YOOO发布了新的文献求助10
5秒前
眼睛大含双完成签到 ,获得积分10
6秒前
7秒前
chenjingjing发布了新的文献求助10
7秒前
9秒前
今年发论文完成签到,获得积分10
9秒前
9秒前
江夏完成签到 ,获得积分10
10秒前
枭声应助安静的月亮采纳,获得10
11秒前
13秒前
闾丘剑封发布了新的文献求助10
13秒前
YOOO完成签到,获得积分10
13秒前
14秒前
领导范儿应助7777777采纳,获得10
14秒前
16秒前
17秒前
17秒前
WCM完成签到,获得积分10
17秒前
chen完成签到,获得积分10
18秒前
一一完成签到 ,获得积分10
18秒前
oneday发布了新的文献求助50
18秒前
量子星尘发布了新的文献求助10
19秒前
明天见完成签到,获得积分10
20秒前
Ukey发布了新的文献求助10
22秒前
22秒前
北执完成签到,获得积分10
23秒前
23秒前
恐怖稽器人完成签到,获得积分10
23秒前
24秒前
24秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734932
求助须知:如何正确求助?哪些是违规求助? 5357333
关于积分的说明 15328116
捐赠科研通 4879418
什么是DOI,文献DOI怎么找? 2621901
邀请新用户注册赠送积分活动 1571096
关于科研通互助平台的介绍 1527906