Automatic stenosis recognition from coronary angiography using convolutional neural networks

人工智能 狭窄 计算机科学 卷积神经网络 医学 深度学习 分割 血管造影 放射科 关键帧 特征(语言学) 帧(网络) 模式识别(心理学) 计算机视觉 哲学 电信 语言学
作者
Jong Ho Moon,Da Young Lee,Won Chul Cha,Myung Jin Chung,Sender Herschorn,Baek Hwan Cho,Jinho Choi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:198: 105819-105819 被引量:30
标识
DOI:10.1016/j.cmpb.2020.105819
摘要

Coronary artery disease, which is mostly caused by atherosclerotic narrowing of the coronary artery lumen, is a leading cause of death. Coronary angiography is the standard method to estimate the severity of coronary artery stenosis, but is frequently limited by intra- and inter-observer variations. We propose a deep-learning algorithm that automatically recognizes stenosis in coronary angiographic images. The proposed method consists of key frame detection, deep learning model training for classification of stenosis on each key frame, and visualization of the possible location of the stenosis. Firstly, we propose an algorithm that automatically extracts key frames essential for diagnosis from 452 right coronary artery angiography movie clips. Our deep learning model is then trained with image-level annotations to classify the areas narrowed by over 50 %. To make the model focus on the salient features, we apply a self-attention mechanism. The stenotic locations are visualized using the activated area of feature maps with gradient-weighted class activation mapping. The automatically detected key frame was very close to the manually selected key frame (average distance (1.70 ± 0.12) frame per clip). The model was trained with key frames on internal datasets, and validated with internal and external datasets. Our training method achieved high frame-wise area-under-the-curve of 0.971, frame-wise accuracy of 0.934, and clip-wise accuracy of 0.965 in the average values of cross-validation evaluations. The external validation results showed high performances with the mean frame-wise area-under-the-curve of (0.925 and 0.956) in the single and ensemble model, respectively. Heat map visualization shows the location for different types of stenosis in both internal and external data sets. With the self-attention mechanism, the stenosis could be precisely localized, which helps to accurately classify the stenosis by type. Our automated classification algorithm could recognize and localize coronary artery stenosis highly accurately. Our approach might provide the basis for a screening and assistant tool for the interpretation of coronary angiography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南逸然发布了新的文献求助10
刚刚
刚刚
xiaohe完成签到,获得积分10
刚刚
刚刚
隐形曼青应助camera采纳,获得10
刚刚
狗狗完成签到 ,获得积分10
1秒前
SciGPT应助Melody采纳,获得10
1秒前
听粥发布了新的文献求助10
1秒前
小张在进步完成签到,获得积分10
2秒前
科研通AI5应助WNL采纳,获得10
2秒前
阿蒙发布了新的文献求助10
2秒前
自觉石头完成签到 ,获得积分10
3秒前
田様应助岁月轮回采纳,获得10
3秒前
hao完成签到,获得积分10
3秒前
bjbbh发布了新的文献求助10
3秒前
皓月千里完成签到,获得积分10
3秒前
夏小安完成签到,获得积分10
3秒前
4秒前
ymh完成签到,获得积分10
4秒前
starry发布了新的文献求助10
4秒前
hualidy完成签到,获得积分10
4秒前
qifa完成签到,获得积分10
4秒前
4秒前
春夏秋冬发布了新的文献求助10
4秒前
习习发布了新的文献求助10
5秒前
5秒前
往事无痕完成签到 ,获得积分10
6秒前
6秒前
6秒前
逸龙完成签到,获得积分10
6秒前
buno应助单纯的雅香采纳,获得10
7秒前
xinchengzhu发布了新的文献求助10
8秒前
派大星发布了新的文献求助10
8秒前
科研通AI5应助黄紫红蓝采纳,获得10
9秒前
9秒前
9秒前
fff发布了新的文献求助10
9秒前
9秒前
10秒前
科研人发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678