Automatic stenosis recognition from coronary angiography using convolutional neural networks

人工智能 狭窄 计算机科学 卷积神经网络 医学 深度学习 分割 血管造影 放射科 关键帧 特征(语言学) 帧(网络) 模式识别(心理学) 计算机视觉 哲学 电信 语言学
作者
Jong Ho Moon,Da Young Lee,Won Chul Cha,Myung Jin Chung,Sender Herschorn,Baek Hwan Cho,Jinho Choi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:198: 105819-105819 被引量:30
标识
DOI:10.1016/j.cmpb.2020.105819
摘要

Coronary artery disease, which is mostly caused by atherosclerotic narrowing of the coronary artery lumen, is a leading cause of death. Coronary angiography is the standard method to estimate the severity of coronary artery stenosis, but is frequently limited by intra- and inter-observer variations. We propose a deep-learning algorithm that automatically recognizes stenosis in coronary angiographic images. The proposed method consists of key frame detection, deep learning model training for classification of stenosis on each key frame, and visualization of the possible location of the stenosis. Firstly, we propose an algorithm that automatically extracts key frames essential for diagnosis from 452 right coronary artery angiography movie clips. Our deep learning model is then trained with image-level annotations to classify the areas narrowed by over 50 %. To make the model focus on the salient features, we apply a self-attention mechanism. The stenotic locations are visualized using the activated area of feature maps with gradient-weighted class activation mapping. The automatically detected key frame was very close to the manually selected key frame (average distance (1.70 ± 0.12) frame per clip). The model was trained with key frames on internal datasets, and validated with internal and external datasets. Our training method achieved high frame-wise area-under-the-curve of 0.971, frame-wise accuracy of 0.934, and clip-wise accuracy of 0.965 in the average values of cross-validation evaluations. The external validation results showed high performances with the mean frame-wise area-under-the-curve of (0.925 and 0.956) in the single and ensemble model, respectively. Heat map visualization shows the location for different types of stenosis in both internal and external data sets. With the self-attention mechanism, the stenosis could be precisely localized, which helps to accurately classify the stenosis by type. Our automated classification algorithm could recognize and localize coronary artery stenosis highly accurately. Our approach might provide the basis for a screening and assistant tool for the interpretation of coronary angiography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你莫停完成签到,获得积分10
刚刚
顾矜应助云宇采纳,获得10
刚刚
1秒前
1秒前
LaKers发布了新的文献求助10
3秒前
shuguang发布了新的文献求助10
4秒前
5秒前
5秒前
还没想好昵称完成签到,获得积分10
5秒前
谨慎飞丹完成签到 ,获得积分10
5秒前
6秒前
阿尔弗雷德完成签到 ,获得积分10
6秒前
7秒前
德德发布了新的文献求助10
9秒前
Bressanone发布了新的文献求助10
10秒前
liuliu完成签到 ,获得积分10
10秒前
欣喜晓夏发布了新的文献求助10
11秒前
Ava应助ywzqdhy采纳,获得10
14秒前
糖豆豆吃豆豆完成签到,获得积分10
17秒前
诸觅双完成签到 ,获得积分10
19秒前
newbiology关注了科研通微信公众号
20秒前
Jasper应助小钱钱采纳,获得10
22秒前
莉莉酱完成签到,获得积分10
22秒前
早上好发布了新的文献求助10
22秒前
24秒前
俗人关注了科研通微信公众号
25秒前
AI imaging发布了新的文献求助10
25秒前
丘比特应助newbiology采纳,获得10
30秒前
思源应助陈曦采纳,获得10
30秒前
30秒前
lemonlmm应助ricky采纳,获得30
30秒前
欣喜晓夏完成签到,获得积分20
30秒前
进步一点点完成签到,获得积分20
31秒前
31秒前
Ava应助房房房破防啦采纳,获得10
32秒前
32秒前
AI imaging完成签到,获得积分10
34秒前
35秒前
无所屌谓发布了新的文献求助10
35秒前
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187