Automatic stenosis recognition from coronary angiography using convolutional neural networks

人工智能 狭窄 计算机科学 卷积神经网络 医学 深度学习 分割 血管造影 放射科 关键帧 特征(语言学) 帧(网络) 模式识别(心理学) 计算机视觉 哲学 电信 语言学
作者
Jong Ho Moon,Da Young Lee,Won Chul Cha,Myung Jin Chung,Sender Herschorn,Baek Hwan Cho,Jinho Choi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:198: 105819-105819 被引量:30
标识
DOI:10.1016/j.cmpb.2020.105819
摘要

Coronary artery disease, which is mostly caused by atherosclerotic narrowing of the coronary artery lumen, is a leading cause of death. Coronary angiography is the standard method to estimate the severity of coronary artery stenosis, but is frequently limited by intra- and inter-observer variations. We propose a deep-learning algorithm that automatically recognizes stenosis in coronary angiographic images. The proposed method consists of key frame detection, deep learning model training for classification of stenosis on each key frame, and visualization of the possible location of the stenosis. Firstly, we propose an algorithm that automatically extracts key frames essential for diagnosis from 452 right coronary artery angiography movie clips. Our deep learning model is then trained with image-level annotations to classify the areas narrowed by over 50 %. To make the model focus on the salient features, we apply a self-attention mechanism. The stenotic locations are visualized using the activated area of feature maps with gradient-weighted class activation mapping. The automatically detected key frame was very close to the manually selected key frame (average distance (1.70 ± 0.12) frame per clip). The model was trained with key frames on internal datasets, and validated with internal and external datasets. Our training method achieved high frame-wise area-under-the-curve of 0.971, frame-wise accuracy of 0.934, and clip-wise accuracy of 0.965 in the average values of cross-validation evaluations. The external validation results showed high performances with the mean frame-wise area-under-the-curve of (0.925 and 0.956) in the single and ensemble model, respectively. Heat map visualization shows the location for different types of stenosis in both internal and external data sets. With the self-attention mechanism, the stenosis could be precisely localized, which helps to accurately classify the stenosis by type. Our automated classification algorithm could recognize and localize coronary artery stenosis highly accurately. Our approach might provide the basis for a screening and assistant tool for the interpretation of coronary angiography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助标致夜蕾采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
theverve发布了新的文献求助50
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
chenfu发布了新的文献求助10
4秒前
DDy10001发布了新的文献求助10
8秒前
9秒前
呜呜发布了新的文献求助10
9秒前
夏风完成签到 ,获得积分10
9秒前
9秒前
stayreal完成签到,获得积分10
9秒前
10秒前
省委一把手完成签到,获得积分10
10秒前
10秒前
淡然绝山发布了新的文献求助10
11秒前
DDy10001完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
Isabelxin_完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
传奇3应助整齐冬瓜采纳,获得10
13秒前
Jamie2发布了新的文献求助10
15秒前
Lucas应助SDNUDRUG采纳,获得10
15秒前
泯珉发布了新的文献求助30
16秒前
Isabelxin_发布了新的文献求助10
16秒前
17秒前
寒冷晓凡发布了新的文献求助10
17秒前
巴拉巴拉巴完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961170
求助须知:如何正确求助?哪些是违规求助? 3507441
关于积分的说明 11136135
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790456
邀请新用户注册赠送积分活动 872439
科研通“疑难数据库(出版商)”最低求助积分说明 803152