YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 深度学习 聚类分析 特征(语言学) 领域(数学) 数学 语言学 哲学 纯数学
作者
Ghada Hamed,Mohammed Marey,Safaa Amin El-Sayed,Mohamed F. Tolba
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:200: 105823-105823 被引量:113
标识
DOI:10.1016/j.cmpb.2020.105823
摘要

With the recent development in deep learning since 2012, the use of Convolutional Neural Networks (CNNs) in bioinformatics, especially medical imaging, achieved tremendous success. Besides that, breast masses detection and classifications in mammograms and their pathology classification are considered a critical challenge. Till now, the evaluation process of the screening mammograms is held by human readers which is considered very monotonous, tiring, lengthy, costly, and significantly prone to errors. We propose an end to end computer-aided diagnosis system based on You Only Look Once (YOLO). The proposed system first preprocesses the mammograms from their DICOM format to images without losing data. Then, it detects masses in full-field digital mammograms and distinguishes between the malignant and benign lesions without any human intervention. YOLO has three different architectures, and, in this paper, the three versions are used for mass detection and classification in the mammograms to compare their performance. The use of anchors in YOLO-V3 on the original form of data and its augmented version is proved to improve the detection accuracy especially when the k-means clustering is applied to generate anchors corresponding to the used dataset. Finally, ResNet and Inception are used as feature extractors to compare their classification performance against YOLO. Mammograms with different resolutions are used and based on YOLO-V3, the best results are obtained through detecting 89.4% of the masses in the INbreast mammograms with an average precision of 94.2% and 84.6% for classifying the masses as benign and malignant respectively. YOLO’s classification network is replaced with ResNet and InceptionV3 to get overall accuracy of 91.0% and 95.5%, respectively. The proposed system showed using the experimental results the YOLO impact on the breast masses detection and classification. Especially using the anchor boxes concept in YOLO-V3 that are generated by applying k-means clustering on the dataset, we can detect most of the challenging cases of masses and classify them correctly. Also, by augmenting the dataset using different approaches and comparing with other recent YOLO based studies, it is found that augmenting the training set only is the fairest and accurate to be applied in the realistic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方赫然应助旧梦如烟采纳,获得10
1秒前
方赫然应助旧梦如烟采纳,获得10
1秒前
NJH发布了新的文献求助10
2秒前
子车茗应助勤劳怜寒采纳,获得20
2秒前
小军完成签到,获得积分10
2秒前
4秒前
4秒前
宁毅完成签到,获得积分10
4秒前
浅尝离白应助小白手套auv采纳,获得30
4秒前
绿水菊发布了新的文献求助10
6秒前
赘婿应助后来采纳,获得10
7秒前
牧连碧发布了新的文献求助10
8秒前
柯卿彦发布了新的文献求助10
9秒前
王红玉发布了新的文献求助10
9秒前
一久便惯发布了新的文献求助20
9秒前
11秒前
椿·完成签到 ,获得积分10
11秒前
12秒前
医学生发布了新的文献求助10
14秒前
15秒前
良辰应助transition采纳,获得10
15秒前
柯卿彦完成签到,获得积分10
16秒前
酷波er应助QZZ采纳,获得10
17秒前
王子娇完成签到 ,获得积分20
17秒前
JamesPei应助wang采纳,获得10
17秒前
Dee发布了新的文献求助10
19秒前
清脆泥猴桃完成签到,获得积分10
23秒前
俎树同完成签到 ,获得积分10
24秒前
dbdxyty发布了新的文献求助10
29秒前
April发布了新的文献求助10
30秒前
完美世界应助牧连碧采纳,获得10
31秒前
33秒前
诚心一一完成签到 ,获得积分10
34秒前
医学生完成签到,获得积分10
34秒前
35秒前
来者完成签到,获得积分10
36秒前
猴哥完成签到,获得积分10
37秒前
Oliver发布了新的文献求助10
37秒前
38秒前
乐乐应助科研通管家采纳,获得10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290692
求助须知:如何正确求助?哪些是违规求助? 2927290
关于积分的说明 8431689
捐赠科研通 2598693
什么是DOI,文献DOI怎么找? 1418006
科研通“疑难数据库(出版商)”最低求助积分说明 659975
邀请新用户注册赠送积分活动 642580