YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 深度学习 聚类分析 特征(语言学) 领域(数学) 数学 语言学 哲学 纯数学
作者
Ghada Hamed,Mohammed Marey,Safaa Amin El-Sayed,Mohamed F. Tolba
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:200: 105823-105823 被引量:113
标识
DOI:10.1016/j.cmpb.2020.105823
摘要

With the recent development in deep learning since 2012, the use of Convolutional Neural Networks (CNNs) in bioinformatics, especially medical imaging, achieved tremendous success. Besides that, breast masses detection and classifications in mammograms and their pathology classification are considered a critical challenge. Till now, the evaluation process of the screening mammograms is held by human readers which is considered very monotonous, tiring, lengthy, costly, and significantly prone to errors. We propose an end to end computer-aided diagnosis system based on You Only Look Once (YOLO). The proposed system first preprocesses the mammograms from their DICOM format to images without losing data. Then, it detects masses in full-field digital mammograms and distinguishes between the malignant and benign lesions without any human intervention. YOLO has three different architectures, and, in this paper, the three versions are used for mass detection and classification in the mammograms to compare their performance. The use of anchors in YOLO-V3 on the original form of data and its augmented version is proved to improve the detection accuracy especially when the k-means clustering is applied to generate anchors corresponding to the used dataset. Finally, ResNet and Inception are used as feature extractors to compare their classification performance against YOLO. Mammograms with different resolutions are used and based on YOLO-V3, the best results are obtained through detecting 89.4% of the masses in the INbreast mammograms with an average precision of 94.2% and 84.6% for classifying the masses as benign and malignant respectively. YOLO’s classification network is replaced with ResNet and InceptionV3 to get overall accuracy of 91.0% and 95.5%, respectively. The proposed system showed using the experimental results the YOLO impact on the breast masses detection and classification. Especially using the anchor boxes concept in YOLO-V3 that are generated by applying k-means clustering on the dataset, we can detect most of the challenging cases of masses and classify them correctly. Also, by augmenting the dataset using different approaches and comparing with other recent YOLO based studies, it is found that augmenting the training set only is the fairest and accurate to be applied in the realistic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腼腆的耷完成签到,获得积分10
刚刚
1秒前
mrz完成签到,获得积分10
2秒前
2秒前
咎星完成签到,获得积分10
2秒前
阳光的梦寒完成签到 ,获得积分10
3秒前
15327432191完成签到 ,获得积分10
3秒前
二硫氰化钾完成签到,获得积分10
3秒前
火火完成签到 ,获得积分10
3秒前
54489完成签到,获得积分10
3秒前
Edgar完成签到,获得积分10
3秒前
scup发布了新的文献求助10
3秒前
3秒前
纸鹤发布了新的文献求助10
4秒前
Wl0115完成签到,获得积分10
4秒前
慕青应助上进的硬碳采纳,获得10
4秒前
ashoreee发布了新的文献求助10
5秒前
YJ完成签到,获得积分10
5秒前
qin完成签到 ,获得积分10
5秒前
躺在云上看星星完成签到,获得积分10
5秒前
Ukiss完成签到 ,获得积分10
5秒前
lml发布了新的文献求助10
6秒前
XJY完成签到,获得积分10
6秒前
小鱼完成签到,获得积分10
6秒前
杀出个黎明应助jiujiuhuang采纳,获得10
6秒前
南玖发布了新的文献求助10
7秒前
7秒前
shuaixiaoyu完成签到,获得积分10
7秒前
ncuwzq完成签到,获得积分10
7秒前
打老虎完成签到,获得积分10
7秒前
范范完成签到,获得积分10
8秒前
彬彬完成签到,获得积分10
8秒前
zz完成签到,获得积分10
8秒前
kirito完成签到,获得积分10
8秒前
8秒前
明亮无颜完成签到,获得积分10
9秒前
9秒前
10秒前
牙膏完成签到,获得积分10
10秒前
木头发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950238
求助须知:如何正确求助?哪些是违规求助? 3495684
关于积分的说明 11078092
捐赠科研通 3226106
什么是DOI,文献DOI怎么找? 1783479
邀请新用户注册赠送积分活动 867704
科研通“疑难数据库(出版商)”最低求助积分说明 800894