The use of machine learning and deep learning algorithms in functional magnetic resonance imaging—A systematic review

人工智能 机器学习 计算机科学 深度学习 功能磁共振成像 算法 心理学 神经科学
作者
Mamoon Rashid,Harjeet Singh,Vishal Goyal
出处
期刊:Expert Systems [Wiley]
卷期号:37 (6) 被引量:47
标识
DOI:10.1111/exsy.12644
摘要

Abstract Functional Magnetic Resonance Imaging (fMRI) is presently one of the most popular techniques for analysing the dynamic states in brain images using various kinds of algorithms. From the last decade, there is an exponential rise in the use of the machine and deep learning algorithms of artificial intelligence for analysing fMRI data. However, it is a big challenge for every researcher to choose a suitable machine or deep learning algorithm for analysing fMRI data due to the availability of a large number of algorithms in the literature. It takes much time for each researcher to know about the various approaches and algorithms which are in use for fMRI data. This paper provides a review in a systematic manner for the present literature of fMRI data that makes use of the machine and deep learning algorithms. The major goals of this review paper are to (a) identify machine learning and deep learning research trends for the implementation of fMRI; (b) identify usage of Machine Learning Algorithms and deep learning in fMRI, and (c) help new researchers based on fMRI to put their new findings appropriately in existing domain of fMRI research. The results of this systematic review identified various fMRI studies and classified them based on fMRI types, mental diseases, use of machine learning and deep learning algorithms. The authors have provided the studies with the best performance of machine learning and deep learning algorithms used in fMRI. The authors believe that this systematic review will help incoming researchers on fMRI in their future works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助qq采纳,获得10
1秒前
上官若男应助迟山采纳,获得10
2秒前
陈德茂完成签到,获得积分10
2秒前
慕青应助天天小女孩采纳,获得10
3秒前
hhderek完成签到,获得积分10
4秒前
傲娇的笑白完成签到 ,获得积分10
4秒前
外向蜡烛完成签到 ,获得积分10
4秒前
lala完成签到,获得积分10
4秒前
斯文雪青给斯文雪青的求助进行了留言
5秒前
小张完成签到 ,获得积分10
5秒前
文献狗发布了新的文献求助10
5秒前
along完成签到,获得积分20
7秒前
8秒前
你香完成签到,获得积分10
8秒前
song完成签到 ,获得积分10
9秒前
开心快乐发大财完成签到,获得积分10
10秒前
运医瘦瘦花生完成签到,获得积分10
10秒前
FIN应助大勺子采纳,获得20
10秒前
天天小女孩完成签到,获得积分10
11秒前
TheBugsss完成签到,获得积分10
12秒前
李健应助tly采纳,获得10
12秒前
12秒前
13秒前
勤劳半青完成签到,获得积分10
13秒前
13秒前
zzz完成签到,获得积分10
13秒前
橘寄完成签到,获得积分10
14秒前
傻瓜子发布了新的文献求助10
14秒前
xiaohuhuan完成签到,获得积分10
15秒前
Vincent完成签到,获得积分10
15秒前
123123完成签到,获得积分10
17秒前
朱祥龙完成签到,获得积分10
17秒前
Gorone完成签到,获得积分10
18秒前
啦啦啦完成签到,获得积分10
18秒前
缪连虎发布了新的文献求助10
19秒前
Gorone发布了新的文献求助10
21秒前
JCTera发布了新的文献求助10
21秒前
传奇3应助WL采纳,获得10
21秒前
ZXR完成签到 ,获得积分10
22秒前
锦鲤完成签到 ,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761129
求助须知:如何正确求助?哪些是违规求助? 3305049
关于积分的说明 10132066
捐赠科研通 3019064
什么是DOI,文献DOI怎么找? 1657959
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604