An Initialization Method of Deep Q-network for Learning Acceleration of Robotic Grasp

抓住 初始化 计算机科学 人工智能 机器人 强化学习 机器学习 监督学习 分歧(语言学) 工作区 功能可见性 人工神经网络 人机交互 语言学 哲学 程序设计语言
作者
Yanxu Hou,Jun Li,Zihan Fang,Xuechao Zhang
标识
DOI:10.1109/icnsc48988.2020.9238061
摘要

Generally, self-supervised learning of robotic grasp utilizes a model-free Reinforcement Learning method, e.g., a Deep Q-network (DQN). A DQN makes use of a high-dimensional Q-network to infer dense pixel-wise probability maps of affordances for grasping actions. Unfortunately, it usually leads to a time-consuming training process. Inspired by the initialization thought of optimization algorithms, we propose a method of initialization for accelerating self-supervised learning of robotic grasp. It pre-trains the Q-network by the supervised learning of affordance maps before the robotic grasp training. When applying the pre-trained Q-network a robot can be trained through self-supervised trial-and-error in a purposeful style to avoid meaningless grasping in empty regions. The Q-network is pre-trained by supervised learning on a small dataset with coarse-grained labels. We test the proposed method with Mean Square Error, Smooth L1, and Kullback-Leibler Divergence (KLD) as loss functions in the pre-training phase. The results indicate that the KLD loss function can predict accurately affordances with less noise in the empty regions. Also, our method is able to accelerate the self-supervised learning significantly in the early stage and shows little relevance to the sparsity of objects in the workspace.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
虎啊虎啊发布了新的文献求助10
3秒前
3秒前
墨染完成签到 ,获得积分10
4秒前
4秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Return应助科研通管家采纳,获得10
5秒前
rebubu应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
chen应助科研通管家采纳,获得10
5秒前
游子轩应助科研通管家采纳,获得10
6秒前
123456完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Return应助科研通管家采纳,获得10
6秒前
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
Orange应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得200
6秒前
珞槿发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
chen应助科研通管家采纳,获得10
7秒前
哇哇哇发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
Singularity发布了新的文献求助10
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800