An Initialization Method of Deep Q-network for Learning Acceleration of Robotic Grasp

抓住 初始化 计算机科学 人工智能 机器人 强化学习 机器学习 监督学习 分歧(语言学) 工作区 功能可见性 人工神经网络 人机交互 语言学 哲学 程序设计语言
作者
Yanxu Hou,Jun Li,Zihan Fang,Xuechao Zhang
标识
DOI:10.1109/icnsc48988.2020.9238061
摘要

Generally, self-supervised learning of robotic grasp utilizes a model-free Reinforcement Learning method, e.g., a Deep Q-network (DQN). A DQN makes use of a high-dimensional Q-network to infer dense pixel-wise probability maps of affordances for grasping actions. Unfortunately, it usually leads to a time-consuming training process. Inspired by the initialization thought of optimization algorithms, we propose a method of initialization for accelerating self-supervised learning of robotic grasp. It pre-trains the Q-network by the supervised learning of affordance maps before the robotic grasp training. When applying the pre-trained Q-network a robot can be trained through self-supervised trial-and-error in a purposeful style to avoid meaningless grasping in empty regions. The Q-network is pre-trained by supervised learning on a small dataset with coarse-grained labels. We test the proposed method with Mean Square Error, Smooth L1, and Kullback-Leibler Divergence (KLD) as loss functions in the pre-training phase. The results indicate that the KLD loss function can predict accurately affordances with less noise in the empty regions. Also, our method is able to accelerate the self-supervised learning significantly in the early stage and shows little relevance to the sparsity of objects in the workspace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zihanwang应助QiongYin_123采纳,获得30
2秒前
三跳完成签到 ,获得积分10
3秒前
zzznznnn发布了新的文献求助10
3秒前
所所应助Bili采纳,获得10
3秒前
DijiaXu应助cainiansss采纳,获得10
3秒前
5秒前
Rondab应助ran采纳,获得30
5秒前
346952262发布了新的文献求助10
6秒前
清平道人完成签到,获得积分10
9秒前
麦子发布了新的文献求助10
11秒前
12秒前
zhangyu应助摩根采纳,获得10
12秒前
t团子完成签到,获得积分10
13秒前
13秒前
lair完成签到,获得积分10
14秒前
15秒前
CodeCraft应助346952262采纳,获得10
15秒前
在水一方应助机智幻嫣采纳,获得20
16秒前
18秒前
x跳完成签到,获得积分10
18秒前
xmhxpz发布了新的文献求助10
18秒前
emm发布了新的文献求助10
19秒前
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
Liufgui应助科研通管家采纳,获得20
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
t团子发布了新的文献求助10
21秒前
Jasper应助流光采纳,获得10
21秒前
22秒前
充电宝应助x跳采纳,获得10
22秒前
JamesPei应助高大翠丝采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075