已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GANDALF

计算机科学 生成语法 计算生物学 药物发现 序列(生物学) 化学 组合化学 人工智能 生物 生物化学
作者
Allison M. Rossetto,Wenjin Zhou
标识
DOI:10.1145/3388440.3412487
摘要

Computational drug design has the potential to save time and money by providing a better starting point for new drugs with a complete computational evaluation. We propose a peptide design system for protein targets based on a Generative Adversarial Network (GAN) called GANDALF (Generative Adversarial Network Drug-tArget Ligand Fructifier). GAN based methods have been developed for computational drug design but these can only generate small molecules, not peptides. Peptides are very complex macromolecules which makes them much more difficult than small molecules to generate. Our GANDALF methodology uses two networks to generate a new peptide sequence and structure. It also incorporates data such as active atoms not used in other methods. Active atoms are important because they interact via electron sharing when a target protein and a peptide bind to each other. We can identify the active atoms using our electron structure calculation (eCADD) program and the rules of interaction we have developed. Our method goes farther than comparable methods by generating a full peptide structure as well as predicting binding affinity. The results were validated using a multi-step process comparing the results with FDA approved drugs and our initial prototype method. We have generated multiple peptides for three targets of interest (PD-1, PDL-1, and CTLA-4) and have found that the best generated peptide for each target was comparable to the FDA approved drugs in binding affinity and fitness of 3D binding as well as show the generated peptides were unique from the existing FDA drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修辛完成签到 ,获得积分10
2秒前
cosimo完成签到 ,获得积分10
4秒前
Cpp完成签到 ,获得积分10
4秒前
shuhaha完成签到,获得积分10
6秒前
张利奥完成签到 ,获得积分10
10秒前
破灭圆舞曲完成签到,获得积分10
11秒前
song完成签到,获得积分10
11秒前
英姑应助陳.采纳,获得10
19秒前
19秒前
23秒前
机灵的冷风完成签到,获得积分20
25秒前
南国之霄发布了新的文献求助10
25秒前
hhh发布了新的文献求助10
29秒前
Yt完成签到 ,获得积分10
30秒前
30秒前
ferritin完成签到 ,获得积分10
32秒前
32秒前
36秒前
LR发布了新的文献求助10
38秒前
39秒前
绿柏完成签到,获得积分10
39秒前
陳.发布了新的文献求助10
40秒前
40秒前
努力的淼淼完成签到 ,获得积分10
40秒前
41秒前
Spike发布了新的文献求助10
41秒前
42秒前
44秒前
46秒前
田様应助LR采纳,获得10
47秒前
克泷完成签到 ,获得积分10
48秒前
浩whu完成签到,获得积分10
48秒前
49秒前
wanci应助baill采纳,获得10
51秒前
田様应助南余采纳,获得10
51秒前
清爽鼠标完成签到 ,获得积分10
51秒前
52秒前
53秒前
小袁完成签到 ,获得积分10
53秒前
随机波动应助dlfg采纳,获得20
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090300
求助须知:如何正确求助?哪些是违规求助? 4304991
关于积分的说明 13415058
捐赠科研通 4130561
什么是DOI,文献DOI怎么找? 2262480
邀请新用户注册赠送积分活动 1266327
关于科研通互助平台的介绍 1201063