GANDALF

计算机科学 生成语法 计算生物学 药物发现 序列(生物学) 化学 组合化学 人工智能 生物 生物化学
作者
Allison M. Rossetto,Wenjin Zhou
标识
DOI:10.1145/3388440.3412487
摘要

Computational drug design has the potential to save time and money by providing a better starting point for new drugs with a complete computational evaluation. We propose a peptide design system for protein targets based on a Generative Adversarial Network (GAN) called GANDALF (Generative Adversarial Network Drug-tArget Ligand Fructifier). GAN based methods have been developed for computational drug design but these can only generate small molecules, not peptides. Peptides are very complex macromolecules which makes them much more difficult than small molecules to generate. Our GANDALF methodology uses two networks to generate a new peptide sequence and structure. It also incorporates data such as active atoms not used in other methods. Active atoms are important because they interact via electron sharing when a target protein and a peptide bind to each other. We can identify the active atoms using our electron structure calculation (eCADD) program and the rules of interaction we have developed. Our method goes farther than comparable methods by generating a full peptide structure as well as predicting binding affinity. The results were validated using a multi-step process comparing the results with FDA approved drugs and our initial prototype method. We have generated multiple peptides for three targets of interest (PD-1, PDL-1, and CTLA-4) and have found that the best generated peptide for each target was comparable to the FDA approved drugs in binding affinity and fitness of 3D binding as well as show the generated peptides were unique from the existing FDA drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得30
刚刚
我是老大应助心灵美语兰采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得30
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
火山羊发布了新的文献求助10
4秒前
5秒前
菜菜带带完成签到,获得积分10
6秒前
HaiFeng完成签到,获得积分10
6秒前
OeO完成签到 ,获得积分10
6秒前
7秒前
lu完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI2S应助邓焕然采纳,获得10
11秒前
11秒前
兔兔要睡觉完成签到 ,获得积分10
11秒前
12秒前
zxdnbb发布了新的文献求助10
12秒前
14秒前
Peng发布了新的文献求助10
14秒前
dyf发布了新的文献求助10
15秒前
不吃脑花完成签到,获得积分20
15秒前
taoyitao发布了新的文献求助10
16秒前
dreamer完成签到,获得积分10
18秒前
隐形曼青应助菜菜带带采纳,获得10
19秒前
兔兔不睡觉完成签到 ,获得积分10
20秒前
JamesPei应助youchao采纳,获得10
22秒前
24秒前
24秒前
Peng完成签到,获得积分20
25秒前
stq1997发布了新的文献求助10
25秒前
搜集达人应助康康采纳,获得10
25秒前
酷波er应助无奈梦岚采纳,获得10
27秒前
shelemi发布了新的文献求助10
27秒前
李爱国应助小于采纳,获得10
28秒前
yk完成签到,获得积分10
28秒前
领导范儿应助dyf采纳,获得10
29秒前
Mircale完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527726
捐赠科研通 2621578
什么是DOI,文献DOI怎么找? 1433864
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637