计算机科学
肽
生成语法
计算生物学
药物发现
序列(生物学)
化学
组合化学
人工智能
生物
生物化学
作者
Allison M. Rossetto,Wenjin Zhou
标识
DOI:10.1145/3388440.3412487
摘要
Computational drug design has the potential to save time and money by providing a better starting point for new drugs with a complete computational evaluation. We propose a peptide design system for protein targets based on a Generative Adversarial Network (GAN) called GANDALF (Generative Adversarial Network Drug-tArget Ligand Fructifier). GAN based methods have been developed for computational drug design but these can only generate small molecules, not peptides. Peptides are very complex macromolecules which makes them much more difficult than small molecules to generate. Our GANDALF methodology uses two networks to generate a new peptide sequence and structure. It also incorporates data such as active atoms not used in other methods. Active atoms are important because they interact via electron sharing when a target protein and a peptide bind to each other. We can identify the active atoms using our electron structure calculation (eCADD) program and the rules of interaction we have developed. Our method goes farther than comparable methods by generating a full peptide structure as well as predicting binding affinity. The results were validated using a multi-step process comparing the results with FDA approved drugs and our initial prototype method. We have generated multiple peptides for three targets of interest (PD-1, PDL-1, and CTLA-4) and have found that the best generated peptide for each target was comparable to the FDA approved drugs in binding affinity and fitness of 3D binding as well as show the generated peptides were unique from the existing FDA drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI