已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer

医学 肺癌 放射治疗 无线电技术 列线图 核医学 放射科 肿瘤科 内科学
作者
Vincent Bourbonne,Ronrick Da-ano,Vincent Jaouen,François Lucia,Gurvan Dissaux,Julien Bert,Olivier Pradier,Dimitris Visvikis,Mathieu Hatt,Ulrike Schick
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:155: 144-150 被引量:40
标识
DOI:10.1016/j.radonc.2020.10.040
摘要

Abstract

Purpose

(Chemo)–radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus.

Methods

Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc).

Results

167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72.

Conclusion

In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddj完成签到 ,获得积分10
刚刚
Felicity完成签到 ,获得积分10
刚刚
4秒前
机智明辉完成签到,获得积分10
4秒前
7秒前
123发布了新的文献求助10
9秒前
lauraaa完成签到,获得积分10
10秒前
HEIKU应助瘦瘦的寒珊采纳,获得10
11秒前
杨诚发布了新的文献求助10
12秒前
mmmm应助yunnguw采纳,获得10
15秒前
18秒前
快乐听南完成签到 ,获得积分10
19秒前
19秒前
烂烂发布了新的文献求助10
20秒前
PSY发布了新的文献求助30
23秒前
TS发布了新的文献求助10
23秒前
等待往事完成签到,获得积分10
24秒前
25秒前
lauraaa发布了新的文献求助10
25秒前
Hongtao完成签到 ,获得积分10
26秒前
w。发布了新的文献求助20
27秒前
等待往事发布了新的文献求助10
28秒前
634301059发布了新的文献求助10
29秒前
情怀应助桥豆麻袋采纳,获得10
29秒前
落后盼望完成签到,获得积分10
33秒前
123发布了新的文献求助10
34秒前
36秒前
38秒前
38秒前
桥豆麻袋发布了新的文献求助10
40秒前
调研昵称发布了新的文献求助10
41秒前
呵呵哒完成签到,获得积分10
41秒前
HR112应助动人的书雪采纳,获得10
42秒前
灰光呀完成签到,获得积分10
43秒前
小呀嘛小二郎完成签到 ,获得积分10
44秒前
46秒前
西瓜发布了新的文献求助10
49秒前
49秒前
无奈完成签到,获得积分10
49秒前
51秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142