Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer

医学 肺癌 放射治疗 无线电技术 列线图 核医学 放射科 肿瘤科 内科学
作者
Vincent Bourbonne,Ronrick Da‐ano,Vincent Jaouen,François Lucia,Gurvan Dissaux,Julien Bert,Olivier Pradier,Dimitris Visvikis,Mathieu Hatt,Ulrike Schick
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:155: 144-150 被引量:41
标识
DOI:10.1016/j.radonc.2020.10.040
摘要

Abstract

Purpose

(Chemo)–radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus.

Methods

Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc).

Results

167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72.

Conclusion

In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
coco完成签到,获得积分10
3秒前
lshao完成签到 ,获得积分10
4秒前
4秒前
zhou发布了新的文献求助30
5秒前
跋扈完成签到,获得积分10
7秒前
温柔翰发布了新的文献求助10
7秒前
7秒前
Jj发布了新的文献求助10
8秒前
ficus_min发布了新的文献求助10
8秒前
木子发布了新的文献求助10
9秒前
Galato发布了新的文献求助10
9秒前
寒冷哈密瓜完成签到 ,获得积分0
9秒前
大模型应助shen采纳,获得10
10秒前
123566完成签到,获得积分10
10秒前
hohn完成签到,获得积分10
10秒前
科研通AI2S应助bsn采纳,获得10
12秒前
LL发布了新的文献求助10
12秒前
张西西完成签到 ,获得积分10
13秒前
研友_ZAxj7n完成签到,获得积分20
15秒前
海上钢琴家完成签到,获得积分10
15秒前
日富一日完成签到,获得积分10
15秒前
大妙妙完成签到 ,获得积分10
15秒前
1111完成签到 ,获得积分10
16秒前
zhong完成签到,获得积分10
16秒前
Zsx完成签到,获得积分10
17秒前
18秒前
无辜念文完成签到,获得积分10
19秒前
Xx完成签到,获得积分10
20秒前
arcremnant完成签到,获得积分10
20秒前
星辰完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
allenice完成签到,获得积分10
21秒前
22秒前
xwz2025发布了新的文献求助10
22秒前
23秒前
ficus_min完成签到,获得积分10
23秒前
大个应助zhaotuo采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048