亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer

医学 肺癌 放射治疗 无线电技术 列线图 核医学 放射科 肿瘤科 内科学
作者
Vincent Bourbonne,Ronrick Da‐ano,Vincent Jaouen,François Lucia,Gurvan Dissaux,Julien Bert,Olivier Pradier,Dimitris Visvikis,Mathieu Hatt,Ulrike Schick
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:155: 144-150 被引量:41
标识
DOI:10.1016/j.radonc.2020.10.040
摘要

Abstract

Purpose

(Chemo)–radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus.

Methods

Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc).

Results

167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72.

Conclusion

In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助桃桃采纳,获得10
1秒前
13秒前
21秒前
26秒前
34秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
所所应助爱笑的毛衣采纳,获得10
41秒前
54秒前
1分钟前
duan完成签到 ,获得积分10
1分钟前
holder完成签到,获得积分10
1分钟前
1分钟前
沐白发布了新的文献求助10
1分钟前
1分钟前
刘宇童发布了新的文献求助10
1分钟前
大模型应助吕易巧采纳,获得10
1分钟前
迷人问兰完成签到,获得积分10
2分钟前
闪闪映易完成签到 ,获得积分10
2分钟前
2分钟前
吕易巧发布了新的文献求助10
2分钟前
吕易巧完成签到,获得积分10
2分钟前
2分钟前
Liiiiiiiiii发布了新的文献求助10
2分钟前
XuchaoD完成签到,获得积分10
2分钟前
2分钟前
今后应助Liiiiiiiiii采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
小张完成签到 ,获得积分10
3分钟前
可耐的冰萍完成签到,获得积分10
3分钟前
充电宝应助干净涵梅采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
李李发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990049
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270976
什么是DOI,文献DOI怎么找? 1805166
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228