亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer

医学 肺癌 放射治疗 无线电技术 列线图 核医学 放射科 肿瘤科 内科学
作者
Vincent Bourbonne,Ronrick Da‐ano,Vincent Jaouen,François Lucia,Gurvan Dissaux,Julien Bert,Olivier Pradier,Dimitris Visvikis,Mathieu Hatt,Ulrike Schick
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:155: 144-150 被引量:51
标识
DOI:10.1016/j.radonc.2020.10.040
摘要

Abstract

Purpose

(Chemo)–radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus.

Methods

Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc).

Results

167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72.

Conclusion

In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Aleksibob采纳,获得30
刚刚
马嘉祺超绝鸡肉线完成签到,获得积分10
刚刚
2秒前
GavinYi完成签到,获得积分10
3秒前
小马甲应助琪琪采纳,获得10
4秒前
luyajie发布了新的文献求助10
5秒前
5秒前
6秒前
舒心谷雪完成签到 ,获得积分10
8秒前
小二郎应助刺猬采纳,获得10
8秒前
9秒前
Aleksibob完成签到,获得积分10
10秒前
SciGPT应助丰富的松鼠采纳,获得10
13秒前
喜悦宫苴完成签到,获得积分10
14秒前
14秒前
16秒前
乐乐应助Tracy采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
20秒前
英姑应助渡己。采纳,获得10
20秒前
烟花应助科研通管家采纳,获得50
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
归尘应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
归尘应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
月子淇应助科研通管家采纳,获得10
20秒前
mingjing完成签到 ,获得积分10
22秒前
Chenzr完成签到,获得积分10
23秒前
赘婿应助lively采纳,获得10
24秒前
CodeCraft应助loi9采纳,获得10
28秒前
30秒前
31秒前
32秒前
nini完成签到,获得积分10
35秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314