Pseudo‐CT generation from multi‐parametric MRI using a novel multi‐channel multi‐path conditional generative adversarial network for nasopharyngeal carcinoma patients

鉴别器 人工智能 霍恩斯菲尔德秤 模式识别(心理学) 参数统计 计算机科学 数学 核医学 医学 算法 放射科 计算机断层摄影术 统计 电信 探测器
作者
Xin Tie,Saikit Lam,Yong Zhang,K. B. Lee,Kwok‐Hung Au,Jing Cai
出处
期刊:Medical Physics [Wiley]
卷期号:47 (4): 1750-1762 被引量:63
标识
DOI:10.1002/mp.14062
摘要

Purpose To develop and evaluate a novel method for pseudo‐CT generation from multi‐parametric MR images using multi‐channel multi‐path generative adversarial network (MCMP‐GAN). Methods Pre‐ and post‐contrast T1‐weighted (T1‐w), T2‐weighted (T2‐w) MRI, and treatment planning CT images of 32 nasopharyngeal carcinoma (NPC) patients were employed to train a pixel‐to‐pixel MCMP‐GAN. The network was developed based on a 5‐level Residual U‐Net (ResU‐Net) with the channel‐based independent feature extraction network to generate pseudo‐CT images from multi‐parametric MR images. The discriminator with five convolutional layers was added to distinguish between the real CT and pseudo‐CT images, improving the nonlinearity and prediction accuracy of the model. Eightfold cross validation was implemented to validate the proposed MCMP‐GAN. The pseudo‐CT images were evaluated against the corresponding planning CT images based on mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), Dice similarity coefficient (DSC), and Structural similarity index (SSIM). Similar comparisons were also performed against the multi‐channel single‐path GAN (MCSP‐GAN), the single‐channel single‐path GAN (SCSP‐GAN). Results It took approximately 20 h to train the MCMP‐GAN model on a Quadro P6000, and less than 10 s to generate all pseudo‐CT images for the subjects in the test set. The average head MAE between pseudo‐CT and planning CT was 75.7 ± 14.6 Hounsfield Units (HU) for MCMP‐GAN, significantly ( P ‐values < 0.05) lower than that for MCSP‐GAN (79.2 ± 13.0 HU) and SCSP‐GAN (85.8 ± 14.3 HU). For bone only, the MCMP‐GAN yielded a smaller mean MAE (194.6 ± 38.9 HU) than MCSP‐GAN (203.7 ± 33.1 HU), SCSP‐GAN (227.0 ± 36.7 HU). The average PSNR of MCMP‐GAN (29.1 ± 1.6) was found to be higher than that of MCSP‐GAN (28.8 ± 1.2) and SCSP‐GAN (28.2 ± 1.3). In terms of metrics for image similarity, MCMP‐GAN achieved the highest SSIM (0.92 ± 0.02) but did not show significantly improved bone DSC results in comparison with MCSP‐GAN. Conclusions We developed a novel multi‐channel GAN approach for generating pseudo‐CT from multi‐parametric MR images. Our preliminary results in NPC patients showed that the MCMP‐GAN method performed apparently superior to the U‐Net‐GAN and SCSP‐GAN, and slightly better than MCSP‐GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SS发布了新的文献求助10
1秒前
顺顺发布了新的文献求助10
2秒前
2秒前
2秒前
www发布了新的文献求助10
2秒前
3秒前
3秒前
李繁蕊发布了新的文献求助10
4秒前
暴躁的嘉懿完成签到,获得积分10
4秒前
LZH发布了新的文献求助20
4秒前
领导范儿应助rosexu采纳,获得10
5秒前
华生完成签到,获得积分10
6秒前
6秒前
Miracle关注了科研通微信公众号
6秒前
通~发布了新的文献求助10
7秒前
7秒前
Apple完成签到,获得积分10
7秒前
sunzhiyu233发布了新的文献求助10
8秒前
医学僧发布了新的文献求助30
8秒前
Sheila完成签到 ,获得积分10
8秒前
sweetbearm应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
prosperp应助科研通管家采纳,获得20
9秒前
打打应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
执着夏岚完成签到 ,获得积分10
10秒前
CipherSage应助苏州小北采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808