Pseudo‐CT generation from multi‐parametric MRI using a novel multi‐channel multi‐path conditional generative adversarial network for nasopharyngeal carcinoma patients

鉴别器 人工智能 霍恩斯菲尔德秤 模式识别(心理学) 参数统计 计算机科学 数学 核医学 医学 算法 放射科 计算机断层摄影术 统计 电信 探测器
作者
Xin Tie,Saikit Lam,Yong Zhang,K. B. Lee,Kwok‐Hung Au,Jing Cai
出处
期刊:Medical Physics [Wiley]
卷期号:47 (4): 1750-1762 被引量:63
标识
DOI:10.1002/mp.14062
摘要

Purpose To develop and evaluate a novel method for pseudo‐CT generation from multi‐parametric MR images using multi‐channel multi‐path generative adversarial network (MCMP‐GAN). Methods Pre‐ and post‐contrast T1‐weighted (T1‐w), T2‐weighted (T2‐w) MRI, and treatment planning CT images of 32 nasopharyngeal carcinoma (NPC) patients were employed to train a pixel‐to‐pixel MCMP‐GAN. The network was developed based on a 5‐level Residual U‐Net (ResU‐Net) with the channel‐based independent feature extraction network to generate pseudo‐CT images from multi‐parametric MR images. The discriminator with five convolutional layers was added to distinguish between the real CT and pseudo‐CT images, improving the nonlinearity and prediction accuracy of the model. Eightfold cross validation was implemented to validate the proposed MCMP‐GAN. The pseudo‐CT images were evaluated against the corresponding planning CT images based on mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), Dice similarity coefficient (DSC), and Structural similarity index (SSIM). Similar comparisons were also performed against the multi‐channel single‐path GAN (MCSP‐GAN), the single‐channel single‐path GAN (SCSP‐GAN). Results It took approximately 20 h to train the MCMP‐GAN model on a Quadro P6000, and less than 10 s to generate all pseudo‐CT images for the subjects in the test set. The average head MAE between pseudo‐CT and planning CT was 75.7 ± 14.6 Hounsfield Units (HU) for MCMP‐GAN, significantly ( P ‐values < 0.05) lower than that for MCSP‐GAN (79.2 ± 13.0 HU) and SCSP‐GAN (85.8 ± 14.3 HU). For bone only, the MCMP‐GAN yielded a smaller mean MAE (194.6 ± 38.9 HU) than MCSP‐GAN (203.7 ± 33.1 HU), SCSP‐GAN (227.0 ± 36.7 HU). The average PSNR of MCMP‐GAN (29.1 ± 1.6) was found to be higher than that of MCSP‐GAN (28.8 ± 1.2) and SCSP‐GAN (28.2 ± 1.3). In terms of metrics for image similarity, MCMP‐GAN achieved the highest SSIM (0.92 ± 0.02) but did not show significantly improved bone DSC results in comparison with MCSP‐GAN. Conclusions We developed a novel multi‐channel GAN approach for generating pseudo‐CT from multi‐parametric MR images. Our preliminary results in NPC patients showed that the MCMP‐GAN method performed apparently superior to the U‐Net‐GAN and SCSP‐GAN, and slightly better than MCSP‐GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
sxs完成签到 ,获得积分10
2秒前
momo完成签到,获得积分10
5秒前
5秒前
jiangmj1990发布了新的文献求助10
6秒前
qq78910发布了新的文献求助10
7秒前
梁海萍完成签到 ,获得积分10
7秒前
小懒发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
小小怪完成签到 ,获得积分10
11秒前
章鱼小丸子完成签到,获得积分20
11秒前
罂粟完成签到,获得积分10
11秒前
zt发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
所愿完成签到,获得积分20
13秒前
研友_VZG7GZ应助Ttt采纳,获得10
13秒前
13秒前
16秒前
青烟发布了新的文献求助10
17秒前
顾矜应助dynamoo采纳,获得200
18秒前
19秒前
VDC应助Jannie采纳,获得30
22秒前
科目三应助姜露萍采纳,获得10
22秒前
elsa嘻嘻完成签到 ,获得积分10
22秒前
Creeper_dd完成签到 ,获得积分10
22秒前
23秒前
博士加油完成签到,获得积分10
23秒前
MYJ应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
MYJ应助科研通管家采纳,获得50
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601531
求助须知:如何正确求助?哪些是违规求助? 4011197
关于积分的说明 12418641
捐赠科研通 3691181
什么是DOI,文献DOI怎么找? 2034916
邀请新用户注册赠送积分活动 1068216
科研通“疑难数据库(出版商)”最低求助积分说明 952765