Pseudo‐CT generation from multi‐parametric MRI using a novel multi‐channel multi‐path conditional generative adversarial network for nasopharyngeal carcinoma patients

鉴别器 人工智能 霍恩斯菲尔德秤 模式识别(心理学) 参数统计 计算机科学 数学 核医学 医学 算法 放射科 计算机断层摄影术 统计 电信 探测器
作者
Xin Tie,Saikit Lam,Yong Zhang,K. B. Lee,Kwok‐Hung Au,Jing Cai
出处
期刊:Medical Physics [Wiley]
卷期号:47 (4): 1750-1762 被引量:63
标识
DOI:10.1002/mp.14062
摘要

Purpose To develop and evaluate a novel method for pseudo‐CT generation from multi‐parametric MR images using multi‐channel multi‐path generative adversarial network (MCMP‐GAN). Methods Pre‐ and post‐contrast T1‐weighted (T1‐w), T2‐weighted (T2‐w) MRI, and treatment planning CT images of 32 nasopharyngeal carcinoma (NPC) patients were employed to train a pixel‐to‐pixel MCMP‐GAN. The network was developed based on a 5‐level Residual U‐Net (ResU‐Net) with the channel‐based independent feature extraction network to generate pseudo‐CT images from multi‐parametric MR images. The discriminator with five convolutional layers was added to distinguish between the real CT and pseudo‐CT images, improving the nonlinearity and prediction accuracy of the model. Eightfold cross validation was implemented to validate the proposed MCMP‐GAN. The pseudo‐CT images were evaluated against the corresponding planning CT images based on mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), Dice similarity coefficient (DSC), and Structural similarity index (SSIM). Similar comparisons were also performed against the multi‐channel single‐path GAN (MCSP‐GAN), the single‐channel single‐path GAN (SCSP‐GAN). Results It took approximately 20 h to train the MCMP‐GAN model on a Quadro P6000, and less than 10 s to generate all pseudo‐CT images for the subjects in the test set. The average head MAE between pseudo‐CT and planning CT was 75.7 ± 14.6 Hounsfield Units (HU) for MCMP‐GAN, significantly ( P ‐values < 0.05) lower than that for MCSP‐GAN (79.2 ± 13.0 HU) and SCSP‐GAN (85.8 ± 14.3 HU). For bone only, the MCMP‐GAN yielded a smaller mean MAE (194.6 ± 38.9 HU) than MCSP‐GAN (203.7 ± 33.1 HU), SCSP‐GAN (227.0 ± 36.7 HU). The average PSNR of MCMP‐GAN (29.1 ± 1.6) was found to be higher than that of MCSP‐GAN (28.8 ± 1.2) and SCSP‐GAN (28.2 ± 1.3). In terms of metrics for image similarity, MCMP‐GAN achieved the highest SSIM (0.92 ± 0.02) but did not show significantly improved bone DSC results in comparison with MCSP‐GAN. Conclusions We developed a novel multi‐channel GAN approach for generating pseudo‐CT from multi‐parametric MR images. Our preliminary results in NPC patients showed that the MCMP‐GAN method performed apparently superior to the U‐Net‐GAN and SCSP‐GAN, and slightly better than MCSP‐GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff发布了新的文献求助10
刚刚
顺利的冬瓜完成签到,获得积分10
刚刚
ttt发布了新的文献求助20
刚刚
1秒前
1秒前
2秒前
Yuki完成签到,获得积分10
2秒前
zlzl完成签到,获得积分10
2秒前
3秒前
NiS发布了新的文献求助30
3秒前
小情绪完成签到 ,获得积分10
4秒前
xly完成签到,获得积分10
4秒前
云风发布了新的文献求助10
6秒前
6秒前
BY关闭了BY文献求助
7秒前
8秒前
8秒前
恸哭的千鸟完成签到,获得积分10
9秒前
10秒前
zwy发布了新的文献求助10
10秒前
斯文败类应助八大山人采纳,获得10
10秒前
11秒前
爆米花应助有魅力的白凝采纳,获得10
11秒前
Akim应助jjy采纳,获得10
11秒前
高xuewen应助甜蜜笑阳采纳,获得30
12秒前
Dannie发布了新的文献求助10
13秒前
15秒前
heyvan完成签到 ,获得积分10
17秒前
nyc发布了新的文献求助10
19秒前
科目三应助zhangling采纳,获得10
19秒前
SciGPT应助忧心的雁采纳,获得10
20秒前
20秒前
21秒前
jrlhappy完成签到,获得积分20
21秒前
23秒前
小小完成签到,获得积分10
24秒前
jrlhappy发布了新的文献求助10
25秒前
25秒前
八大山人发布了新的文献求助10
26秒前
28秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228