Pseudo‐CT generation from multi‐parametric MRI using a novel multi‐channel multi‐path conditional generative adversarial network for nasopharyngeal carcinoma patients

鉴别器 人工智能 霍恩斯菲尔德秤 模式识别(心理学) 参数统计 计算机科学 数学 核医学 医学 算法 放射科 计算机断层摄影术 统计 电信 探测器
作者
Xin Tie,Saikit Lam,Yong Zhang,K. B. Lee,Kwok‐Hung Au,Jing Cai
出处
期刊:Medical Physics [Wiley]
卷期号:47 (4): 1750-1762 被引量:63
标识
DOI:10.1002/mp.14062
摘要

Purpose To develop and evaluate a novel method for pseudo‐CT generation from multi‐parametric MR images using multi‐channel multi‐path generative adversarial network (MCMP‐GAN). Methods Pre‐ and post‐contrast T1‐weighted (T1‐w), T2‐weighted (T2‐w) MRI, and treatment planning CT images of 32 nasopharyngeal carcinoma (NPC) patients were employed to train a pixel‐to‐pixel MCMP‐GAN. The network was developed based on a 5‐level Residual U‐Net (ResU‐Net) with the channel‐based independent feature extraction network to generate pseudo‐CT images from multi‐parametric MR images. The discriminator with five convolutional layers was added to distinguish between the real CT and pseudo‐CT images, improving the nonlinearity and prediction accuracy of the model. Eightfold cross validation was implemented to validate the proposed MCMP‐GAN. The pseudo‐CT images were evaluated against the corresponding planning CT images based on mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), Dice similarity coefficient (DSC), and Structural similarity index (SSIM). Similar comparisons were also performed against the multi‐channel single‐path GAN (MCSP‐GAN), the single‐channel single‐path GAN (SCSP‐GAN). Results It took approximately 20 h to train the MCMP‐GAN model on a Quadro P6000, and less than 10 s to generate all pseudo‐CT images for the subjects in the test set. The average head MAE between pseudo‐CT and planning CT was 75.7 ± 14.6 Hounsfield Units (HU) for MCMP‐GAN, significantly ( P ‐values < 0.05) lower than that for MCSP‐GAN (79.2 ± 13.0 HU) and SCSP‐GAN (85.8 ± 14.3 HU). For bone only, the MCMP‐GAN yielded a smaller mean MAE (194.6 ± 38.9 HU) than MCSP‐GAN (203.7 ± 33.1 HU), SCSP‐GAN (227.0 ± 36.7 HU). The average PSNR of MCMP‐GAN (29.1 ± 1.6) was found to be higher than that of MCSP‐GAN (28.8 ± 1.2) and SCSP‐GAN (28.2 ± 1.3). In terms of metrics for image similarity, MCMP‐GAN achieved the highest SSIM (0.92 ± 0.02) but did not show significantly improved bone DSC results in comparison with MCSP‐GAN. Conclusions We developed a novel multi‐channel GAN approach for generating pseudo‐CT from multi‐parametric MR images. Our preliminary results in NPC patients showed that the MCMP‐GAN method performed apparently superior to the U‐Net‐GAN and SCSP‐GAN, and slightly better than MCSP‐GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助晓晓采纳,获得10
1秒前
踏雪无痕6509完成签到,获得积分10
1秒前
Owen应助x5kyi采纳,获得10
2秒前
善学以致用应助zero采纳,获得10
2秒前
Tian应助小李采纳,获得10
2秒前
2秒前
IVY完成签到 ,获得积分10
2秒前
yinyuli发布了新的文献求助10
3秒前
3秒前
ED应助踏雪无痕6509采纳,获得10
5秒前
打打应助研友_8RyzBZ采纳,获得10
7秒前
JianmaoChen发布了新的文献求助10
7秒前
木头人应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
dong应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
hi应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
云飞扬应助科研通管家采纳,获得10
9秒前
10秒前
ww应助洁净的钢铁侠采纳,获得10
10秒前
11秒前
11秒前
木香发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助JianmaoChen采纳,获得10
14秒前
14秒前
14秒前
斯文败类应助雨落瑾年采纳,获得10
16秒前
sgt发布了新的文献求助10
16秒前
IVY关注了科研通微信公众号
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821