Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model

马尔可夫链 消费(社会学) 水准点(测量) 计量经济学 概率逻辑 计算机科学 工程类 统计 数学 电气工程 大地测量学 社会科学 社会学 地理
作者
Joakim Munkhammar,Dennis van der Meer,Joakim Widén
出处
期刊:Applied Energy [Elsevier BV]
卷期号:282: 116180-116180 被引量:66
标识
DOI:10.1016/j.apenergy.2020.116180
摘要

This study utilizes the Markov-chain mixture distribution model (MCM) for very short term load forecasting of residential electricity consumption. The model is used to forecast one step ahead half hour resolution residential electricity consumption data from Australia. The results are compared with Quantile Regression (QR) and Persistence Ensemble (PeEn) as advanced and simple benchmark models. The results were compared in terms of reliability, reliability mean absolute error (rMAE), prediction interval normalized average width (PINAW) and normalized continuous ranked probability score (nCRPS). For 10 steps conditioning for QR and PeEn, the MCM results were on par with QR, and superior to PeEn. As a sensitivity analysis, simulations were performed where the number of data points for conditioning QR and PeEn was varied and compared to the MCM output, which is based on only one data point for conditioning. It was shown that in terms of nCRPS and rMAE the QR results converged towards the MCM results for lower number of conditioning points included in QR. The nCRPS of PeEn never reached the superior MCM and QR results, but in rMAE, for number of conditioning points above 24, PeEn was the most reliable. Based on the sparse complexity design of MCM, high computational speed and competitive performance, it is suggested as a candidate for benchmark model in probabilistic forecasting of electricity consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆浩学化学完成签到 ,获得积分10
刚刚
23xyke完成签到,获得积分10
刚刚
pluto应助小龙采纳,获得20
刚刚
wufel完成签到,获得积分10
1秒前
2秒前
lhj完成签到,获得积分10
4秒前
JunHan发布了新的文献求助10
5秒前
轮回1奇点完成签到,获得积分10
6秒前
潘趣酒完成签到,获得积分10
7秒前
春天的粥完成签到 ,获得积分10
7秒前
7秒前
零度完成签到 ,获得积分10
8秒前
8秒前
8秒前
钮若翠完成签到,获得积分10
9秒前
9秒前
懿桉完成签到,获得积分10
9秒前
和谐诗柳完成签到 ,获得积分10
10秒前
JunHan完成签到,获得积分10
10秒前
fallingstar发布了新的文献求助10
11秒前
12秒前
玩命的不平完成签到,获得积分10
12秒前
冯昊发布了新的文献求助10
13秒前
14秒前
14秒前
少女徐必成完成签到 ,获得积分10
16秒前
钮若翠发布了新的文献求助10
18秒前
19秒前
haipronl应助易安采纳,获得30
19秒前
chenshiyi185发布了新的文献求助10
19秒前
嗯嗯完成签到,获得积分10
20秒前
木辛艺完成签到,获得积分20
21秒前
嗯嗯发布了新的文献求助10
24秒前
24秒前
26秒前
和谐诗柳发布了新的文献求助10
27秒前
咔嚓完成签到,获得积分10
29秒前
30秒前
穆羊青完成签到 ,获得积分10
32秒前
木辛艺关注了科研通微信公众号
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751