Multilingual Review-aware Deep Recommender System via Aspect-based Sentiment Analysis

计算机科学 可解释性 RSS 模棱两可 情绪分析 推荐系统 杠杆(统计) 人工智能 机器学习 自然语言处理 情报检索 万维网 程序设计语言
作者
Peng Liu,Lemei Zhang,Jon Atle Gulla
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:39 (2): 1-33 被引量:52
标识
DOI:10.1145/3432049
摘要

With the dramatic expansion of international markets, consumers write reviews in different languages, which poses a new challenge for Recommender Systems (RSs) dealing with this increasing amount of multilingual information. Recent studies that leverage deep-learning techniques for review-aware RSs have demonstrated their effectiveness in modelling fine-grained user-item interactions through the aspects of reviews. However, most of these models can neither take full advantage of the contextual information from multilingual reviews nor discriminate the inherent ambiguity of words originated from the user’s different tendency in writing. To this end, we propose a novel Multilingual Review-aware Deep Recommendation Model (MrRec) for rating prediction tasks. MrRec mainly consists of two parts: (1) Multilingual aspect-based sentiment analysis module (MABSA), which aims to jointly extract aligned aspects and their associated sentiments in different languages simultaneously with only requiring overall review ratings. (2) Multilingual recommendation module that learns aspect importances of both the user and item with considering different contributions of multiple languages and estimates aspect utility via a dual interactive attention mechanism integrated with aspect-specific sentiments from MABSA. Finally, overall ratings can be inferred by a prediction layer adopting the aspect utility value and aspect importance as inputs. Extensive experimental results on nine real-world datasets demonstrate the superior performance and interpretability of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
loren完成签到 ,获得积分10
刚刚
11完成签到,获得积分20
4秒前
默默犀牛发布了新的文献求助30
6秒前
6秒前
cbum完成签到,获得积分10
8秒前
科研通AI6应助kRAY采纳,获得30
8秒前
10秒前
jia完成签到,获得积分20
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
心心应助科研通管家采纳,获得10
10秒前
江川锦鲤发布了新的文献求助10
10秒前
坚定晓兰应助科研通管家采纳,获得10
10秒前
shinen完成签到,获得积分10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
tingting1应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
HarryYang完成签到 ,获得积分10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536747
求助须知:如何正确求助?哪些是违规求助? 4624321
关于积分的说明 14591612
捐赠科研通 4564876
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480690
关于科研通互助平台的介绍 1451972