假电容
材料科学
法拉第效率
阳极
电解质
超级电容器
纳米技术
电化学
相间
电池(电)
化学工程
化学
电极
功率(物理)
工程类
物理化学
物理
生物
量子力学
遗传学
作者
Meng Ma,Liyun Cao,Jiayin Li,Kai Yao,Jianfeng Huang,Hui Qi,Shaoyi Chen
标识
DOI:10.1016/j.cej.2020.124119
摘要
Constructing pseudocapacitive materials to combine the battery-level energy density with the cycle life and power density of supercapacitors is a promising energy storage technique. Nanostructuring can greatly induce extrinsic pseudocapacitance, but excessive solid electrolyte interphase (SEI) as the activity surface increases usually results in a poor coulombic efficiency (CE) of battery. Here, we separately investigate the electrochemical properties of self-assembled Fe2O3 "mulberry" architecture, quantum dots and bulk particles. Employed as an anode of lithium ion battery, the mulberry architecture retains a dominant pseudocapacitance behavior and high electrochemical activity. It delivers an initial capacity of 1383.8 mAh g−1, 22.1% higher than Fe2O3 bulk in similar size, in which the pseudocapacitance contribution up to 80.6% at 0.4 mV s−1. Furthermore, the mulberry architecture decreases the activity surface contacted with electrolyte to enable a limited SEI, achieving a higher coulombic efficiency (initial CE: 80.1%, average CE: 98.9%) well above that of individual quantum dots. This work is expected to inspire the design of novel high-performance anode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI