已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multimodal Saliency Model for Videos With High Audio-Visual Correspondence

计算机科学 人工智能 视听 Kadir–Brady显著性检测器 计算机视觉 显著性图 可视化 情态动词 模态(人机交互) 模式识别(心理学) 语音识别 图像(数学) 多媒体 化学 高分子化学
作者
Xiongkuo Min,Guangtao Zhai,Jiantao Zhou,Xiao–Ping Zhang,Xiaokang Yang,Xinping Guan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 3805-3819 被引量:179
标识
DOI:10.1109/tip.2020.2966082
摘要

Audio information has been bypassed by most of current visual attention prediction studies. However, sound could have influence on visual attention and such influence has been widely investigated and proofed by many psychological studies. In this paper, we propose a novel multi-modal saliency (MMS) model for videos containing scenes with high audio-visual correspondence. In such scenes, humans tend to be attracted by the sound sources and it is also possible to localize the sound sources via cross-modal analysis. Specifically, we first detect the spatial and temporal saliency maps from the visual modality by using a novel free energy principle. Then we propose to detect the audio saliency map from both audio and visual modalities by localizing the moving-sounding objects using cross-modal kernel canonical correlation analysis, which is first of its kind in the literature. Finally we propose a new two-stage adaptive audiovisual saliency fusion method to integrate the spatial, temporal and audio saliency maps to our audio-visual saliency map. The proposed MMS model has captured the influence of audio, which is not considered in the latest deep learning based saliency models. To take advantages of both deep saliency modeling and audio-visual saliency modeling, we propose to combine deep saliency models and the MMS model via a later fusion, and we find that an average of 5% performance gain is obtained. Experimental results on audio-visual attention databases show that the introduced models incorporating audio cues have significant superiority over state-of-the-art image and video saliency models which utilize a single visual modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhr完成签到 ,获得积分10
刚刚
想睡觉亦寻完成签到 ,获得积分10
1秒前
Liao完成签到 ,获得积分10
1秒前
华师发布了新的文献求助10
2秒前
漂流完成签到,获得积分10
5秒前
吃点红糖馒头完成签到 ,获得积分10
5秒前
酷炫的黄豆完成签到 ,获得积分10
5秒前
Flash完成签到 ,获得积分10
7秒前
xiaoshuwang完成签到,获得积分10
8秒前
瀚森完成签到 ,获得积分10
9秒前
10秒前
符fu完成签到 ,获得积分10
14秒前
甜甜甜完成签到 ,获得积分10
15秒前
淡淡无春完成签到,获得积分20
15秒前
湖月照我影关注了科研通微信公众号
16秒前
Bismarck完成签到,获得积分10
18秒前
DEF完成签到,获得积分10
18秒前
leslie完成签到 ,获得积分10
18秒前
青糯完成签到 ,获得积分10
18秒前
mao完成签到,获得积分10
19秒前
丘比特应助华师采纳,获得10
21秒前
压缩完成签到 ,获得积分10
21秒前
慕青应助xx采纳,获得10
21秒前
康康完成签到 ,获得积分10
22秒前
Nina完成签到 ,获得积分10
23秒前
微笑的白柏完成签到,获得积分10
23秒前
summer发布了新的文献求助10
24秒前
qqq完成签到 ,获得积分10
24秒前
小豆子完成签到 ,获得积分10
25秒前
25秒前
xiaoxie完成签到 ,获得积分10
27秒前
28秒前
Chloe完成签到 ,获得积分10
31秒前
JOKER完成签到,获得积分10
31秒前
xiaoxioayixi完成签到 ,获得积分10
32秒前
Snow完成签到 ,获得积分10
32秒前
CTK发布了新的文献求助10
33秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
37秒前
怕黑鲂完成签到 ,获得积分10
37秒前
阿尔弗雷德完成签到 ,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310979
求助须知:如何正确求助?哪些是违规求助? 2943803
关于积分的说明 8516399
捐赠科研通 2619072
什么是DOI,文献DOI怎么找? 1431987
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649782