亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multimodal Saliency Model for Videos With High Audio-Visual Correspondence

计算机科学 人工智能 视听 Kadir–Brady显著性检测器 计算机视觉 显著性图 可视化 情态动词 模态(人机交互) 模式识别(心理学) 语音识别 图像(数学) 多媒体 化学 高分子化学
作者
Xiongkuo Min,Guangtao Zhai,Jiantao Zhou,Xiao–Ping Zhang,Xiaokang Yang,Xinping Guan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 3805-3819 被引量:179
标识
DOI:10.1109/tip.2020.2966082
摘要

Audio information has been bypassed by most of current visual attention prediction studies. However, sound could have influence on visual attention and such influence has been widely investigated and proofed by many psychological studies. In this paper, we propose a novel multi-modal saliency (MMS) model for videos containing scenes with high audio-visual correspondence. In such scenes, humans tend to be attracted by the sound sources and it is also possible to localize the sound sources via cross-modal analysis. Specifically, we first detect the spatial and temporal saliency maps from the visual modality by using a novel free energy principle. Then we propose to detect the audio saliency map from both audio and visual modalities by localizing the moving-sounding objects using cross-modal kernel canonical correlation analysis, which is first of its kind in the literature. Finally we propose a new two-stage adaptive audiovisual saliency fusion method to integrate the spatial, temporal and audio saliency maps to our audio-visual saliency map. The proposed MMS model has captured the influence of audio, which is not considered in the latest deep learning based saliency models. To take advantages of both deep saliency modeling and audio-visual saliency modeling, we propose to combine deep saliency models and the MMS model via a later fusion, and we find that an average of 5% performance gain is obtained. Experimental results on audio-visual attention databases show that the introduced models incorporating audio cues have significant superiority over state-of-the-art image and video saliency models which utilize a single visual modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助读书的时候采纳,获得10
12秒前
26秒前
27秒前
29秒前
31秒前
勤恳依霜发布了新的文献求助10
32秒前
35秒前
fufufu123完成签到 ,获得积分10
51秒前
57秒前
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
冉亦完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Omni发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
袁青寒完成签到,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935393
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058829
捐赠科研通 3977730
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107367