A Multimodal Saliency Model for Videos With High Audio-Visual Correspondence

计算机科学 人工智能 视听 Kadir–Brady显著性检测器 计算机视觉 显著性图 可视化 情态动词 模态(人机交互) 模式识别(心理学) 语音识别 图像(数学) 多媒体 化学 高分子化学
作者
Xiongkuo Min,Guangtao Zhai,Jiantao Zhou,Xiao–Ping Zhang,Xiaokang Yang,Xinping Guan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 3805-3819 被引量:179
标识
DOI:10.1109/tip.2020.2966082
摘要

Audio information has been bypassed by most of current visual attention prediction studies. However, sound could have influence on visual attention and such influence has been widely investigated and proofed by many psychological studies. In this paper, we propose a novel multi-modal saliency (MMS) model for videos containing scenes with high audio-visual correspondence. In such scenes, humans tend to be attracted by the sound sources and it is also possible to localize the sound sources via cross-modal analysis. Specifically, we first detect the spatial and temporal saliency maps from the visual modality by using a novel free energy principle. Then we propose to detect the audio saliency map from both audio and visual modalities by localizing the moving-sounding objects using cross-modal kernel canonical correlation analysis, which is first of its kind in the literature. Finally we propose a new two-stage adaptive audiovisual saliency fusion method to integrate the spatial, temporal and audio saliency maps to our audio-visual saliency map. The proposed MMS model has captured the influence of audio, which is not considered in the latest deep learning based saliency models. To take advantages of both deep saliency modeling and audio-visual saliency modeling, we propose to combine deep saliency models and the MMS model via a later fusion, and we find that an average of 5% performance gain is obtained. Experimental results on audio-visual attention databases show that the introduced models incorporating audio cues have significant superiority over state-of-the-art image and video saliency models which utilize a single visual modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
WalkToSky完成签到,获得积分10
3秒前
菜菜就爱玩完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
博修发布了新的文献求助10
5秒前
llc完成签到 ,获得积分10
5秒前
我是老大应助饼的书采纳,获得10
6秒前
7秒前
Liuxinyan发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
mo发布了新的文献求助10
8秒前
cx完成签到,获得积分10
8秒前
陈龙发布了新的文献求助30
9秒前
根根发布了新的文献求助10
9秒前
饱满乐萱发布了新的文献求助10
9秒前
9秒前
詹妮完成签到,获得积分10
10秒前
潸潸发布了新的文献求助30
10秒前
10秒前
fs完成签到,获得积分10
10秒前
追寻宛海发布了新的文献求助20
11秒前
科研牛马发布了新的文献求助10
12秒前
大模型应助博修采纳,获得10
12秒前
TINASURE发布了新的文献求助10
13秒前
13秒前
从容幼南发布了新的文献求助10
14秒前
16秒前
婷婷发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
TINASURE完成签到,获得积分20
19秒前
Liuxinyan完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403