Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries

化学 水溶液 氧化还原 无机化学 有机化学
作者
Kwan Woo Nam,Heejin Kim,Yassine Beldjoudi,Taewoo Kwon,Dong Jun Kim,J. Fraser Stoddart
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (5): 2541-2548 被引量:297
标识
DOI:10.1021/jacs.9b12436
摘要

Aqueous rechargeable zinc batteries (ZBs) have received considerable attention recently for large-scale energy storage systems in terms of rate performance, cost, and safety. Nevertheless, these ZBs still remain a subject for investigation, as researchers search for cathode materials enabling high performance. Among the various candidate cathode materials for ZBs, quinone compounds stand out as candidates because of their high specific capacity, sustainability, and low cost. Quinone-based cathodes, however, suffer from the critical limitation of undergoing dissolution during battery cycling, leading to a deterioration in battery life. To address this problem, we have introduced a redox-active triangular phenanthrenequinone-based macrocycle (PQ-Δ) with a rigid geometry and layered superstructure. Notably, we have confirmed that Zn2+ ions, together with H2O molecules, can be inserted into the PQ-Δ organic cathode, and, as a consequence, the interfacial resistance between the cathode and electrolytes is decreased effectively. Density functional theory calculations have revealed that the low interfacial resistance can be attributed mainly to decreasing the desolvation energy penalty as a result of the insertion of hydrated Zn2+ ions in the PQ-Δ cathode. The combined effects of the insertion of hydrated Zn2+ ions and the robust triangular structure of PQ-Δ serve to achieve a large reversible capacity of 210 mAh g–1 at a high current density of 150 mA g–1, along with an excellent cycle-life, that is, 99.9% retention after 500 cycles. These findings suggest that the utilization of electron-active organic macrocycles, combined with the low interfacial resistance associated with the solvation of divalent carrier ions, is essential for the overall performance of divalent battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
huluobo发布了新的文献求助10
2秒前
lingVing瑜发布了新的文献求助10
2秒前
2秒前
LIN完成签到,获得积分10
3秒前
3秒前
黄憨憨发布了新的文献求助10
4秒前
lulu8809完成签到,获得积分10
4秒前
111完成签到,获得积分10
6秒前
Zlq发布了新的文献求助10
7秒前
嗳7完成签到 ,获得积分10
7秒前
7秒前
后门完成签到,获得积分10
7秒前
9秒前
一一完成签到,获得积分10
10秒前
dong完成签到,获得积分10
12秒前
后门发布了新的文献求助10
14秒前
小杨同学发布了新的文献求助10
16秒前
Ultra完成签到,获得积分10
16秒前
junlin发布了新的文献求助10
16秒前
午后两点最热完成签到 ,获得积分10
19秒前
情怀应助云山采纳,获得10
20秒前
TS发布了新的文献求助10
20秒前
21秒前
21秒前
Owen应助lingVing瑜采纳,获得10
21秒前
wang完成签到,获得积分10
24秒前
111发布了新的文献求助10
26秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
柔弱云朵应助科研通管家采纳,获得20
31秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
Tao发布了新的文献求助10
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得20
31秒前
Orange应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
joker完成签到,获得积分10
34秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707976
求助须知:如何正确求助?哪些是违规求助? 3256482
关于积分的说明 9900627
捐赠科研通 2969064
什么是DOI,文献DOI怎么找? 1628303
邀请新用户注册赠送积分活动 772091
科研通“疑难数据库(出版商)”最低求助积分说明 743611