已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魁梧的傲芙完成签到,获得积分10
刚刚
1秒前
云初完成签到,获得积分10
1秒前
hahaha完成签到 ,获得积分10
1秒前
1秒前
1秒前
3秒前
欣喜的诗筠完成签到 ,获得积分10
4秒前
Omni完成签到,获得积分10
4秒前
子陇完成签到,获得积分10
5秒前
6秒前
LTJ完成签到,获得积分10
6秒前
又声完成签到,获得积分10
9秒前
9秒前
Yxxx完成签到 ,获得积分10
10秒前
酷波er应助秀儿采纳,获得10
11秒前
故意不上钩的鱼应助Omni采纳,获得10
11秒前
13秒前
隐形曼青应助魔幻的外套采纳,获得10
15秒前
充电宝应助yyyyyzy采纳,获得10
17秒前
弈天完成签到 ,获得积分10
17秒前
芝士奶盖有点咸完成签到 ,获得积分10
18秒前
成就书雪完成签到,获得积分10
19秒前
你好完成签到 ,获得积分0
20秒前
spring完成签到,获得积分10
23秒前
23秒前
sweet完成签到 ,获得积分10
23秒前
23秒前
小呆完成签到 ,获得积分10
24秒前
25秒前
27秒前
秀儿发布了新的文献求助10
27秒前
27秒前
羁鸟完成签到,获得积分10
29秒前
尚秋月完成签到,获得积分10
33秒前
33秒前
傲娇的棉花糖完成签到 ,获得积分10
34秒前
35秒前
科目三应助无风采纳,获得10
36秒前
坦率的语芙完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290873
求助须知:如何正确求助?哪些是违规求助? 4442088
关于积分的说明 13829259
捐赠科研通 4324915
什么是DOI,文献DOI怎么找? 2373887
邀请新用户注册赠送积分活动 1369281
关于科研通互助平台的介绍 1333356