清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
然来溪完成签到 ,获得积分10
刚刚
5秒前
冷静丸子完成签到 ,获得积分10
5秒前
Ye完成签到,获得积分10
8秒前
可爱紫文完成签到 ,获得积分10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
kehe完成签到 ,获得积分10
22秒前
28秒前
kehe!完成签到 ,获得积分0
28秒前
周周完成签到 ,获得积分10
29秒前
笑点低完成签到 ,获得积分10
31秒前
33秒前
37秒前
Alex-Song完成签到 ,获得积分0
39秒前
乐乐应助务实的犀牛采纳,获得10
43秒前
sweet雪儿妞妞完成签到 ,获得积分10
45秒前
Richard发布了新的文献求助20
49秒前
MM完成签到 ,获得积分10
49秒前
专注的觅云完成签到 ,获得积分10
49秒前
GingerF应助笑点低采纳,获得50
50秒前
ranj完成签到,获得积分10
51秒前
pluto应助xiaxiao采纳,获得10
54秒前
yhy完成签到 ,获得积分10
54秒前
浮游应助sidashu采纳,获得10
56秒前
量子星尘发布了新的文献求助10
56秒前
龙弟弟完成签到 ,获得积分10
58秒前
zhangsan完成签到,获得积分10
59秒前
gengsumin完成签到,获得积分10
59秒前
Lilian完成签到,获得积分10
1分钟前
changfox完成签到,获得积分10
1分钟前
Zhangfu完成签到,获得积分10
1分钟前
1分钟前
coding完成签到,获得积分10
1分钟前
独孤家驹完成签到 ,获得积分10
1分钟前
xiaxiao完成签到,获得积分0
1分钟前
lynn完成签到,获得积分10
1分钟前
Richard发布了新的文献求助10
1分钟前
丘比特应助南桥采纳,获得10
1分钟前
liuye0202完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426818
求助须知:如何正确求助?哪些是违规求助? 4540422
关于积分的说明 14172176
捐赠科研通 4458324
什么是DOI,文献DOI怎么找? 2444953
邀请新用户注册赠送积分活动 1435976
关于科研通互助平台的介绍 1413486