重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉发布了新的文献求助10
刚刚
Akim应助蒸馒头争气采纳,获得10
1秒前
flywo完成签到,获得积分10
2秒前
2秒前
sunset发布了新的文献求助10
2秒前
MJX完成签到,获得积分10
3秒前
情怀应助踏实乌冬面采纳,获得10
3秒前
qiao发布了新的文献求助10
4秒前
4秒前
只要两毛九完成签到,获得积分10
5秒前
wltwb完成签到,获得积分10
6秒前
6秒前
6秒前
xiaoyudian完成签到,获得积分10
6秒前
7秒前
wxyshare应助泡泡采纳,获得10
8秒前
脑洞疼应助哦哦采纳,获得10
8秒前
9秒前
9秒前
快乐砖家完成签到,获得积分10
9秒前
072完成签到,获得积分10
9秒前
wltwb发布了新的文献求助10
10秒前
10秒前
JohnLocke完成签到,获得积分10
10秒前
11秒前
11秒前
桃桃奶盖发布了新的文献求助10
11秒前
20240901发布了新的文献求助10
11秒前
共享精神应助康康采纳,获得10
12秒前
啦啦啦啦发布了新的文献求助20
12秒前
13秒前
happypig发布了新的文献求助10
13秒前
科研通AI6应助cheng采纳,获得30
13秒前
雪落你看不见完成签到,获得积分10
14秒前
朱大帅发布了新的文献求助10
14秒前
14秒前
嘿嘿嘿发布了新的文献求助10
15秒前
15秒前
快乐砖家发布了新的文献求助10
15秒前
安小安发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707