已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助认真路人采纳,获得10
2秒前
Hello应助土豆炖牛肉采纳,获得10
5秒前
邱寒烟aa完成签到 ,获得积分0
5秒前
123456完成签到,获得积分10
7秒前
LQX2141完成签到 ,获得积分10
8秒前
FashionBoy应助白樱恋曲采纳,获得10
9秒前
科研通AI2S应助西溪采纳,获得10
9秒前
11秒前
长之欠完成签到,获得积分10
12秒前
15秒前
SciGPT应助风里追兔采纳,获得10
16秒前
19秒前
19秒前
21秒前
damitang发布了新的文献求助30
24秒前
24秒前
Haimian完成签到,获得积分10
25秒前
26秒前
26秒前
聪明萤完成签到 ,获得积分10
26秒前
科目三应助linshaoyu采纳,获得10
26秒前
我我轻轻完成签到 ,获得积分10
28秒前
百事可乐可口完成签到,获得积分10
28秒前
wtt完成签到,获得积分10
28秒前
不摇碧莲完成签到 ,获得积分10
28秒前
风里追兔发布了新的文献求助10
29秒前
西溪发布了新的文献求助10
30秒前
30秒前
32秒前
小付发布了新的文献求助10
33秒前
大帅比完成签到 ,获得积分10
33秒前
搞怪不言完成签到,获得积分10
35秒前
风里追兔完成签到,获得积分10
35秒前
NexusExplorer应助沉静亦寒采纳,获得30
36秒前
快乐咖啡完成签到,获得积分10
36秒前
taotao完成签到,获得积分10
37秒前
38秒前
msn00完成签到 ,获得积分10
38秒前
CY发布了新的文献求助10
39秒前
懵懂的翠容完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172653
求助须知:如何正确求助?哪些是违规求助? 4362841
关于积分的说明 13584605
捐赠科研通 4210933
什么是DOI,文献DOI怎么找? 2309545
邀请新用户注册赠送积分活动 1308652
关于科研通互助平台的介绍 1255860