Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助背后笑白采纳,获得10
刚刚
哈哈哈的一笑完成签到,获得积分10
刚刚
大轩完成签到 ,获得积分10
刚刚
Perrylin718完成签到,获得积分20
刚刚
香蕉觅云应助易琚采纳,获得10
1秒前
A12138完成签到 ,获得积分10
2秒前
woods发布了新的文献求助30
2秒前
王敏完成签到 ,获得积分10
2秒前
彪壮的小玉应助pppshoot采纳,获得30
3秒前
大白鲸完成签到,获得积分10
4秒前
背后笑白完成签到,获得积分10
7秒前
foxdaopo完成签到,获得积分10
15秒前
不安的橘子完成签到 ,获得积分10
19秒前
安玖完成签到,获得积分10
21秒前
静越完成签到 ,获得积分10
21秒前
22秒前
lefora完成签到,获得积分10
27秒前
29秒前
yaocx完成签到,获得积分10
29秒前
XIEMIN完成签到,获得积分10
30秒前
学术完成签到 ,获得积分10
31秒前
whz关闭了whz文献求助
31秒前
三颗石头完成签到,获得积分10
32秒前
yuxiao发布了新的文献求助10
33秒前
在我梦里绕完成签到,获得积分10
33秒前
空白完成签到 ,获得积分10
36秒前
simon完成签到 ,获得积分10
37秒前
666星爷完成签到,获得积分10
37秒前
kais完成签到 ,获得积分10
37秒前
penzer完成签到 ,获得积分10
40秒前
10完成签到 ,获得积分10
41秒前
向阳葵完成签到 ,获得积分10
41秒前
43秒前
43秒前
yaoyaoyao完成签到 ,获得积分10
44秒前
只有辣椒没有油完成签到 ,获得积分10
45秒前
123456完成签到 ,获得积分10
46秒前
端庄之云发布了新的文献求助10
47秒前
pawpaw009完成签到,获得积分10
47秒前
A爷有特点完成签到 ,获得积分10
48秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180053
求助须知:如何正确求助?哪些是违规求助? 2830396
关于积分的说明 7976790
捐赠科研通 2491986
什么是DOI,文献DOI怎么找? 1329153
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954