Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庭中踏雪来完成签到 ,获得积分10
3秒前
上官若男应助西子阳采纳,获得10
3秒前
3秒前
tqmx完成签到,获得积分10
4秒前
zho发布了新的文献求助10
4秒前
Rondab应助北陆小猫采纳,获得10
6秒前
田様应助zhaoyali采纳,获得10
6秒前
李霞发布了新的文献求助10
6秒前
Ngu完成签到,获得积分10
6秒前
河鲸发布了新的文献求助50
7秒前
7秒前
水何澹澹完成签到,获得积分0
8秒前
羽宇完成签到,获得积分10
8秒前
Rondab应助可可采纳,获得10
10秒前
zhangyu应助小新采纳,获得20
10秒前
Aaron发布了新的文献求助10
10秒前
慕青应助可乐采纳,获得10
11秒前
12秒前
健壮荠完成签到,获得积分10
12秒前
LIU发布了新的文献求助10
13秒前
zho关闭了zho文献求助
13秒前
NexusExplorer应助hyperthermal1采纳,获得10
13秒前
单薄店员发布了新的文献求助10
16秒前
茁壮成长的兰顺完成签到,获得积分10
17秒前
酷酷小海豚完成签到,获得积分20
18秒前
粥粥完成签到 ,获得积分10
19秒前
betty完成签到,获得积分10
21秒前
lian关注了科研通微信公众号
23秒前
HUIZHEV5完成签到,获得积分10
23秒前
乐观囧完成签到,获得积分10
24秒前
故意的仙人掌完成签到,获得积分10
25秒前
SciGPT应助酷酷小海豚采纳,获得10
25秒前
火星上的问儿完成签到,获得积分10
26秒前
26秒前
PanZi完成签到,获得积分20
26秒前
踏实亦氯完成签到,获得积分10
27秒前
大模型应助西子阳采纳,获得10
30秒前
小马甲应助CN_PH采纳,获得10
30秒前
31秒前
一自文又欠完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070