Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
要减肥的冥完成签到,获得积分10
2秒前
youy完成签到 ,获得积分10
2秒前
3秒前
科研通AI6应助陈转霞采纳,获得10
4秒前
6秒前
6秒前
搜集达人应助轻松念蕾采纳,获得10
6秒前
标致幼菱完成签到,获得积分10
6秒前
如意绾绾完成签到,获得积分10
8秒前
bioinforiver完成签到,获得积分10
9秒前
9秒前
梦影发布了新的文献求助10
10秒前
11秒前
edtaa发布了新的文献求助10
11秒前
佳佳完成签到,获得积分10
11秒前
Dan完成签到,获得积分10
11秒前
大个应助CJ采纳,获得10
11秒前
豆小豆完成签到,获得积分10
12秒前
12秒前
12秒前
乐乐应助msuyue采纳,获得10
13秒前
申生氏发布了新的文献求助10
13秒前
Hanoi347应助缥缈凡旋采纳,获得50
14秒前
15秒前
杨战浩完成签到,获得积分10
15秒前
杨树完成签到,获得积分10
15秒前
16秒前
如意绾绾发布了新的文献求助30
16秒前
我爱科研科研爱我完成签到,获得积分10
16秒前
笙笙发布了新的文献求助10
17秒前
今后应助汤哈哈哈哈采纳,获得10
17秒前
豆小豆发布了新的文献求助10
18秒前
安静啤酒发布了新的文献求助10
18秒前
19秒前
Urologyzz完成签到,获得积分10
20秒前
益笙鸿老板完成签到 ,获得积分10
20秒前
汉堡包应助冷傲迎梦采纳,获得10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385