亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简因完成签到 ,获得积分10
4秒前
21秒前
26秒前
大个应助Nill采纳,获得10
26秒前
leo完成签到 ,获得积分10
43秒前
49秒前
量子星尘发布了新的文献求助10
1分钟前
dagangwood完成签到 ,获得积分10
1分钟前
Hanzoe应助oleskarabach采纳,获得10
1分钟前
rpe完成签到,获得积分10
1分钟前
科研小白完成签到 ,获得积分10
2分钟前
英俊的铭应助Swait采纳,获得10
2分钟前
3分钟前
Swait发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小新小新完成签到 ,获得积分10
5分钟前
5分钟前
Nill发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助30
6分钟前
bruna驳回了Hayat应助
6分钟前
6分钟前
sc发布了新的文献求助10
6分钟前
大模型应助Nill采纳,获得10
6分钟前
Suagy应助sc采纳,获得10
6分钟前
7分钟前
北斗发布了新的文献求助10
7分钟前
隐形曼青应助北斗采纳,获得10
7分钟前
sc完成签到,获得积分20
7分钟前
8分钟前
swg发布了新的文献求助10
8分钟前
嘻嘻完成签到,获得积分10
8分钟前
8分钟前
www完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
9分钟前
科研通AI5应助吴门烟水采纳,获得10
10分钟前
爆米花应助Sience采纳,获得10
10分钟前
10分钟前
量子星尘发布了新的文献求助20
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611818
求助须知:如何正确求助?哪些是违规求助? 4017250
关于积分的说明 12436143
捐赠科研通 3699213
什么是DOI,文献DOI怎么找? 2040014
邀请新用户注册赠送积分活动 1072811
科研通“疑难数据库(出版商)”最低求助积分说明 956522