Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我心向明月完成签到,获得积分10
刚刚
笔调完成签到,获得积分10
刚刚
淡淡依霜完成签到 ,获得积分10
2秒前
英吉利25发布了新的文献求助20
2秒前
lu完成签到,获得积分10
3秒前
标致忆丹发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
twinkle完成签到 ,获得积分10
4秒前
sally_5202完成签到 ,获得积分10
9秒前
9秒前
xtutang完成签到,获得积分10
9秒前
zmx123123完成签到,获得积分10
10秒前
11秒前
丙队长完成签到,获得积分10
11秒前
11秒前
曹沛岚完成签到,获得积分10
13秒前
蛋花肉圆汤完成签到,获得积分10
13秒前
LDC完成签到,获得积分10
14秒前
chen完成签到,获得积分10
14秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
小九完成签到,获得积分10
17秒前
sm发布了新的文献求助10
17秒前
19秒前
温馨完成签到 ,获得积分10
20秒前
1cool发布了新的文献求助10
22秒前
SciEngineerX完成签到,获得积分10
22秒前
Xuz完成签到 ,获得积分10
23秒前
24秒前
23完成签到 ,获得积分10
24秒前
确幸完成签到,获得积分10
24秒前
绵羊座鸭梨完成签到 ,获得积分10
27秒前
科研通AI2S应助kli采纳,获得10
27秒前
健忘的访文完成签到,获得积分10
28秒前
小九没烦恼完成签到,获得积分10
29秒前
30秒前
31秒前
飞常爱你哦完成签到 ,获得积分10
31秒前
mix完成签到 ,获得积分10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882