Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mxczsl完成签到,获得积分10
刚刚
1秒前
hai完成签到,获得积分10
2秒前
zhlh发布了新的文献求助10
4秒前
wanci应助Wqian采纳,获得10
5秒前
隐形曼青应助安详的听白采纳,获得10
5秒前
12秒前
明亮紫易发布了新的文献求助10
14秒前
Xjx6519发布了新的文献求助10
15秒前
16秒前
19秒前
烟花应助ami采纳,获得10
22秒前
ivy发布了新的文献求助10
24秒前
25秒前
抹茶泡泡完成签到 ,获得积分10
26秒前
赫连烙发布了新的文献求助10
27秒前
Teddyfeeder完成签到,获得积分10
28秒前
洛黎完成签到 ,获得积分10
29秒前
丘比特应助ivy采纳,获得10
29秒前
山屿发布了新的文献求助30
30秒前
李健应助山雀采纳,获得10
31秒前
开心发布了新的文献求助10
31秒前
31秒前
洛黎关注了科研通微信公众号
32秒前
完美世界应助冷静的荧荧采纳,获得10
34秒前
34秒前
36秒前
36秒前
37秒前
zhlh完成签到,获得积分10
37秒前
科研通AI6应助Xjx6519采纳,获得20
38秒前
tree发布了新的文献求助10
40秒前
tassssadar发布了新的文献求助10
42秒前
Wqian发布了新的文献求助10
43秒前
yiyi完成签到,获得积分10
44秒前
热情高跟鞋完成签到,获得积分10
47秒前
48秒前
50秒前
tassssadar完成签到,获得积分10
51秒前
兰宁发布了新的文献求助30
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550