Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谭谨川发布了新的文献求助10
1秒前
cheung完成签到,获得积分10
1秒前
乌日汗完成签到,获得积分10
2秒前
2秒前
2秒前
公茂源完成签到 ,获得积分10
3秒前
共享精神应助spurs17采纳,获得30
4秒前
BONBON发布了新的文献求助10
5秒前
liuqian发布了新的文献求助10
5秒前
浮生完成签到 ,获得积分10
5秒前
奔跑的青霉素完成签到 ,获得积分10
5秒前
linxue发布了新的文献求助10
5秒前
科研通AI5应助Annie采纳,获得10
5秒前
6秒前
执着发布了新的文献求助20
6秒前
原鑫完成签到,获得积分10
6秒前
寒涛先生完成签到,获得积分20
7秒前
8秒前
科研通AI5应助呆萌的元枫采纳,获得30
8秒前
8秒前
gzsy发布了新的文献求助10
8秒前
10秒前
12秒前
12秒前
哄不好的南完成签到,获得积分10
12秒前
makus完成签到,获得积分10
12秒前
西西歪完成签到,获得积分10
14秒前
14秒前
深情安青应助BONBON采纳,获得10
14秒前
小马完成签到,获得积分10
15秒前
15秒前
细腻沅发布了新的文献求助10
17秒前
火羽白然完成签到 ,获得积分10
17秒前
冰西瓜完成签到 ,获得积分10
18秒前
季忆发布了新的文献求助10
18秒前
18秒前
cc发布了新的文献求助10
19秒前
Hello应助糊涂的小伙采纳,获得10
19秒前
甜甜的冷霜完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808