亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting carbonation coefficient using Artificial neural networks and genetic programming

碳化作用 遗传程序设计 人工神经网络 相关系数 耐久性 线性回归 环境科学 材料科学 数学 计算机科学 统计 机器学习 复合材料
作者
Shreenivas Londhe,Preeti Kulkarni,Pradnya Dixit,Ana Silva,Rui Neves,Jorge de Brito
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:39: 102258-102258 被引量:25
标识
DOI:10.1016/j.jobe.2021.102258
摘要

Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
oou发布了新的文献求助10
1秒前
hui发布了新的文献求助10
5秒前
hui完成签到,获得积分10
14秒前
eric888应助优雅草丛采纳,获得100
34秒前
34秒前
土豪的摩托完成签到 ,获得积分10
38秒前
嘻嘻哈哈发布了新的文献求助70
41秒前
三岁完成签到 ,获得积分10
42秒前
oou完成签到,获得积分10
43秒前
NexusExplorer应助oou采纳,获得10
54秒前
平常安雁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
陈牛逼完成签到 ,获得积分10
1分钟前
Rayyu_0905完成签到 ,获得积分10
1分钟前
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
BowieHuang完成签到,获得积分10
1分钟前
优雅草丛完成签到,获得积分10
1分钟前
2分钟前
lixiaorui发布了新的文献求助10
2分钟前
2分钟前
oou发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
我爱科研发布了新的文献求助10
2分钟前
hope完成签到,获得积分10
2分钟前
3分钟前
Duan完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
涵de暴躁小地雷完成签到,获得积分10
3分钟前
3分钟前
搞怪的沛菡完成签到,获得积分20
3分钟前
gugugu发布了新的文献求助10
3分钟前
cxm完成签到,获得积分10
4分钟前
无畏完成签到 ,获得积分10
4分钟前
大个应助123456采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254222
求助须知:如何正确求助?哪些是违规求助? 4417220
关于积分的说明 13751098
捐赠科研通 4289847
什么是DOI,文献DOI怎么找? 2353783
邀请新用户注册赠送积分活动 1350470
关于科研通互助平台的介绍 1310568